>
JEE Main
>
Mathematics
List of top Mathematics Questions asked in JEE Main
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On respectively, it was found that an observation by mistake was taken 8 instead of 12. The correct standard deviation is
JEE Main - 2024
JEE Main
Mathematics
Variance and Standard Deviation
Let \( A = \{ n \in [100, 700] \cap \mathbb{N} : n \text{ is neither a multiple of 3 nor a multiple of 4} \} \).
Then the number of elements in \( A \) is:
JEE Main - 2024
JEE Main
Mathematics
Sets
Let \( a > 0 \) be a root of the equation \( 2x^2 + x - 2 = 0 \). If \[ \lim_{x \to \frac{1}{a}} \frac{16 \left( 1 - \cos(2 + x - 2x^2) \right)}{1 - ax^2} = \alpha + \beta \sqrt{17}, \] where \( \alpha, \beta \in \mathbb{Z} \), then \( \alpha + \beta \) is equal to _____.
JEE Main - 2024
JEE Main
Mathematics
Quadratic Equations
Let a line perpendicular to the line \( 2x - y = 10 \) touch the parabola \( y^2 = 4(x - 9) \) at the point \( P \). The distance of the point \( P \) from the centre of the circle \[ x^2 + y^2 - 14x - 8y + 56 = 0 \] is _____.
JEE Main - 2024
JEE Main
Mathematics
Coordinate Geometry
Let the point \((-1, \alpha, \beta)\) lie on the line of the shortest distance between the lines \[\frac{x + 2}{-3} = \frac{y - 2}{4} = \frac{z - 5}{2} \quad \text{and} \quad \frac{x + 2}{-1} = \frac{y + 6}{2} = \frac{z - 1}{0}.\] Then \((\alpha - \beta)^2\) is equal to ______.
JEE Main - 2024
JEE Main
Mathematics
3D Geometry
The number of real solutions of the equation x |x + 5| + 2|x + 7| – 2 = 0 is _____.
JEE Main - 2024
JEE Main
Mathematics
Algebra
If \( f(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x} \), \( 0 < t < \pi \), then the value of \[ \int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)} \] equals _____.
JEE Main - 2024
JEE Main
Mathematics
Some Properties of Definite Integrals
Let the mean and the standard deviation of the probability distribution be
be $\mu$ and $\sigma$, respectively. If $\sigma - \mu = 2$, then $\sigma + \mu$ is equal to ________.
JEE Main - 2024
JEE Main
Mathematics
Random Variables and its Probability Distributions
If $y(\theta) = \frac{2\cos\theta + \cos2\theta}{\cos3\theta + 4\cos2\theta + 5\cos\theta + 2}$, then at $\theta = \frac{\pi}{2}, y'' + y' + y$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
Differential Calculus
Let $\alpha \beta \neq 0$ and $A = \begin{bmatrix} \beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2\alpha \end{bmatrix}$. If $B = \begin{bmatrix} 3\alpha & -9 & 3\alpha \\ -\alpha & 7 & -2\alpha \\ -2\alpha & 5 & -2\beta \end{bmatrix}$ is the matrix of cofactors of the elements of A, then det(AB) is equal to:
JEE Main - 2024
JEE Main
Mathematics
Matrices
The coefficients a, b, c in the quadratic equation ax
2
+ bx + c = 0 are from the set {1, 2, 3, 4, 5, 6}. If the probability of this equation having one real root bigger than the other is p, then 216p equals :
JEE Main - 2024
JEE Main
Mathematics
Probability
The values of $m, n$, for which the system of equations
$x + y + z = 4,$
$2x + 5y + 5z = 17,$
$x + 2y + mz = n$
has infinitely many solutions, satisfy the equation :
JEE Main - 2024
JEE Main
Mathematics
Linear Algebra
Let $\beta(m, n) = \int_{0}^{1}x^{m-1}(1-x)^{n-1}dx$, $m, n > 0$. If $\int_{0}^{1}(1-x^{10})^{20}dx = a\beta(b,c)$, then $100(a+b+x)$ equals
JEE Main - 2024
JEE Main
Mathematics
Integral Calculus
Let ABCD and AEFG be squares of side 4 and 2 units, respectively. The point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :
JEE Main - 2024
JEE Main
Mathematics
Coordinate Geometry
If the constant term in the expansion of $\left(\frac{\sqrt[5]{3}}{x}+\frac{2x}{\sqrt[3]{5}}\right)^{12}$, $x \neq 0$, is $\alpha \times 2^8 \times \sqrt[5]{3}$, then $25\alpha$ is
JEE Main - 2024
JEE Main
Mathematics
Binomial theorem
Let $(\alpha, \beta, \gamma)$ be the point $(8, 5, 7)$ in the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{5}$. Then $\alpha + \beta + \gamma$ is equal to
JEE Main - 2024
JEE Main
Mathematics
3D Geometry
Consider three vectors $\vec{a}, \vec{b}, \vec{c}$. Let $|\vec{a}| = 2, |\vec{b}| = 3$ and $\vec{a} = \vec{b} \times \vec{c}$. If $\alpha \in [0, \frac{\pi}{3}]$ is the angle between the vectors $\vec{b}$ and $\vec{c}$, then the minimum value of $27|\vec{c}| - |\vec{a}|^2$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
Vector Algebra
Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as: $f(x) = |x - 1|$ and $g(x) = \begin{cases} e^x, & x \geq 0 \\ x + 1, & x \leq 0 \end{cases}$ Then the function $f(g(x))$ is
JEE Main - 2024
JEE Main
Mathematics
Functions
The differential equation of the family of circles passing the origin and having center at the line y = x is:
JEE Main - 2024
JEE Main
Mathematics
Differential Equations
The area enclosed between the curves $y = x|x|$ and $y = x - |x|$ is:
JEE Main - 2024
JEE Main
Mathematics
Area under Simple Curves
Let $S_1 = \{z \in \mathbb{C} : |z| \leq 5\}$,
$S_2 = \left\{z \in \mathbb{C} : \text{Im}\left(\frac{z + 1 - \sqrt{3}i}{1 - \sqrt{3}i}\right) \geq 0\right\}$ and
$S_3 = \{z \in \mathbb{C} : \text{Re}(z) \geq 0\}$. Then
JEE Main - 2024
JEE Main
Mathematics
Complex numbers
Let \( y = y(x) \) be the solution of the differential equation \[ (x + y + 2)^2 \, dx = dy, \quad y(0) = -2. \] Let the maximum and minimum values of the function \( y = y(x) \) in \( \left[ 0, \frac{\pi}{3} \right] \) be \( \alpha \) and \( \beta \), respectively. If \[ (3\alpha + \pi)^2 + \beta^2 = \gamma + \delta\sqrt{3}, \quad \gamma, \delta \in \mathbb{Z}, \] then \( \gamma + \delta \) equals \( \dots \).
JEE Main - 2024
JEE Main
Mathematics
Differential equations
There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is
JEE Main - 2024
JEE Main
Mathematics
permutations and combinations
If \[ \int \cosec^5 x \, dx = \alpha \cot x \cosec x \left( \cosec^2 x + \frac{3}{2} \right) + \beta \log_e \left| \tan \frac{x}{2} \right| + C, \] where \( \alpha, \beta \in \mathbb{R} \) and \( C \) is the constant of integration, then the value of \( 8(\alpha + \beta) \) equals:
JEE Main - 2024
JEE Main
Mathematics
Integration
Let \( A \) be a \( 2 \times 2 \) symmetric matrix such that \[ A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \] and the determinant of \( A \) be 1. If \( A^{-1} = \alpha A + \beta I \), where \( I \) is the identity matrix of order \( 2 \times 2 \), then \( \alpha + \beta \) equals \( \dots \).
JEE Main - 2024
JEE Main
Mathematics
Matrices and Determinants
Prev
1
...
52
53
54
55
56
...
136
Next