To determine the continuity and differentiability of the function \( g(x) \) at \( x = 1 \), let's analyze its definition:
Thus, the correct answer is that \( g \) is continuous but not differentiable at \( x = 1 \).
To determine the continuity and differentiability of \(g\) at \(x = 1\), we need to check the left-hand limit (LHL) and right-hand limit (RHL) as well as the derivative behavior at \(x = 1\).
Continuity Check:
For \(0 < x \leq 1\), \(g(x) = \min\{f(t)\}\) where \(f(t) = \frac{t}{2} + \frac{2}{t}\).
At \(x = 1\), \(f(1) = \frac{1}{2} + 2 = \frac{5}{2}\).
For \(1 < x < 2\), \(g(x) = \frac{3}{2} + x\).
- Left-hand limit as \(x\) approaches \(1\) from the left:
\(\lim_{x \to 1^-} g(x) = \min\left\{\frac{5}{2}\right\} = \frac{5}{2}.\)
- Right-hand limit as \(x\) approaches \(1\) from the right:
\(\lim_{x \to 1^+} g(x) = \frac{3}{2} + 1 = \frac{5}{2}.\)
Since the left-hand limit equals the right-hand limit and equals \(g(1)\), \(g(x)\) is continuous at \(x = 1\).
Differentiability Check:
The derivative from the left side, \(\frac{d}{dx} (\min\{f(t)\})\) at \(x = 1\), does not match the derivative of \(\frac{3}{2} + x\) from the right side.
Therefore, \(g(x)\) is not differentiable at \(x = 1\).
Thus, \(g\) is continuous but not differentiable at \(x = 1\).
The Correct answer is: g is continuous but not differentiable at x = 1
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
