Given: \(y = \log_e \left( \frac{1 - x^2}{1 + x^2} \right)\)
Step 1. First derivative \( \frac{dy}{dx} \):\(\frac{dy}{dx} = y' = \frac{-4x}{1 - x^4}\)
Step 2. Second derivative \( \frac{d^2y}{dx^2} \):\(y'' = \frac{-4(1 + 3x^4)}{(1 - x^4)^2}\)
Step 3. Calculate \( y' - y'' \) at \( x = \frac{1}{2} \): \(y' - y'' = \frac{-4x}{1 - x^4} + \frac{4(1 + 3x^4)}{(1 - x^4)^2}\)
Step 4. Substitute \( x = \frac{1}{2} \) and simplify to find \( 225(y' - y'') \): After calculations: \(225(y' - y'') = 736\)
The Correct Answer is:736
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: