The given equation is: \(\frac{3\cos 2x + \cos^3 2x}{\cos^6 x - \sin^6 x} = x^3 - x^2 + 6\)
Step 1. Simplify the denominator: Using the identity \( \cos^6 x - \sin^6 x = (\cos^2 x - \sin^2 x)(\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) \) and substituting \( \cos^2 x - \sin^2 x = \cos 2x \), we get:
\(\cos^6 x - \sin^6 x = \cos 2x \cdot (1 - \sin^2 x \cos^2 x)\)
Step 2. Rewrite the equation: Substitute this into the left side:
\(\frac{\cos 2x(3 + \cos^2 2x)}{\cos 2x(1 - \sin^2 x \cos^2 x)} = x^3 - x^2 + 6\)
Simplifying further, we get:
\(\frac{4(3 + \cos^2 2x)}{(4 - \sin^2 2x)} = x^3 - x^2 + 6\)
which simplifies to:
\(\frac{4(3 + \cos^2 2x)}{(3 + \cos^2 2x)} = x^3 - x^2 + 6\)
Step 3. Solve the resulting polynomial equation: Expanding and rearranging terms, we get: \(x^3 - x^2 + 2 = 0\)
Factorizing gives:
\((x + 1)(x^2 - 2x + 2) = 0\)
So the real root is \( x = -1 \).
Step 4. Calculate the sum of real solutions: Since \( x = -1 \) is the only real solution, the sum of real solutions is: -1
The Correct Answer is: -1
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)