We are given the equation:
\[ 5f(x) + 4 \left(\frac{1}{x}\right) = x^2 - 2 \]
Solving for \(f(x)\):
\[ f(x) = \frac{x^2 - 2 - \frac{4}{x}}{5} \]
Now, substitute \(f(x)\) into the equation for \(y\):
\[ y = 9x^2 f(x) = 9x^2 \left(\frac{x^2 - 2 - \frac{4}{x}}{5}\right) \]
Simplifying:
\[ y = \frac{9x^4 - 18x^2 - 36x}{5} \]
Now, differentiate \(y\) with respect to \(x\):
\[ \frac{dy}{dx} = \frac{1}{5} \left(36x^3 - 36x - 36\right) \]
Simplifying:
\[ \frac{dy}{dx} = \frac{36}{5} \left(x^3 - x - 1\right) \]
For \(y\) to be strictly increasing, we need \(\frac{dy}{dx} > 0\), which implies:
\[ x^3 - x - 1 > 0 \]
Solving the inequality \(x^3 - x - 1 > 0\), we find that the critical points are:
\[ x = \pm \frac{1}{\sqrt{5}} \]
Thus, \(y\) is strictly increasing in the intervals:
\[ x \in \left(-\frac{1}{\sqrt{5}}, 0\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right) \]
Given the functional equation \( 5f(x) + 4f\left(\frac{1}{x}\right) = x^2 - 2 \) for all \( x \neq 0 \), and \( y = 9x^2f(x) \), determine the interval(s) where \( y \) is strictly increasing.
To solve for \( f(x) \), we can form a system by replacing \( x \) with \( \frac{1}{x} \) in the given equation. Then solve for \( f(x) \) and compute \( y \), and study its derivative.
Step 1: Set up the system of equations.
Given: \( 5f(x) + 4f\left(\frac{1}{x}\right) = x^2 - 2 \) ...(1)
Replace \( x \) by \( \frac{1}{x} \):
\( 5f\left(\frac{1}{x}\right) + 4f(x) = \frac{1}{x^2} - 2 \) ...(2)
Step 2: Solve for \( f(x) \).
Multiply (1) by 5: \( 25f(x) + 20f\left(\frac{1}{x}\right) = 5x^2 - 10 \) ...(3)
Multiply (2) by 4: \( 20f\left(\frac{1}{x}\right) + 16f(x) = \frac{4}{x^2} - 8 \) ...(4)
Subtract (4) from (3):
\( (25f(x) - 16f(x)) + (20f(1/x) - 20f(1/x)) = 5x^2 - 10 - \left(\frac{4}{x^2} - 8\right) \)
\( 9f(x) = 5x^2 - 10 - \frac{4}{x^2} + 8 \)
\( 9f(x) = 5x^2 - \frac{4}{x^2} - 2 \)
Thus:
\( f(x) = \frac{5x^2 - \frac{4}{x^2} - 2}{9} = \frac{5x^2}{9} - \frac{4}{9x^2} - \frac{2}{9} \)
Step 3: Compute \( y = 9x^2f(x) \).
\( y = 9x^2 \left( \frac{5x^2}{9} - \frac{4}{9x^2} - \frac{2}{9} \right) \)
\( y = 9x^2 \cdot \frac{5x^2}{9} - 9x^2 \cdot \frac{4}{9x^2} - 9x^2 \cdot \frac{2}{9} \)
\( y = 5x^4 - 4 - 2x^2 \)
So \( y = 5x^4 - 2x^2 - 4 \).
Step 4: Find where \( y \) is strictly increasing.
Differentiate:
\( \frac{dy}{dx} = 20x^3 - 4x = 4x(5x^2 - 1) \)
Set \( \frac{dy}{dx} = 0 \):
\( 4x(5x^2 - 1) = 0 \) ⇒ \( x = 0 \) or \( x = \pm \frac{1}{\sqrt{5}} \)
Step 5: Analyze sign of \( \frac{dy}{dx} \).
\( \frac{dy}{dx} = 4x(5x^2 - 1) \)
For \( x < -\frac{1}{\sqrt{5}} \):
\( x < 0 \), \( 5x^2 - 1 > 0 \) ⇒ \( \frac{dy}{dx} = (-)(+) = - \) (decreasing)
For \( -\frac{1}{\sqrt{5}} < x < 0 \):
\( x < 0 \), \( 5x^2 - 1 < 0 \) ⇒ \( \frac{dy}{dx} = (-)(-) = + \) (increasing)
For \( 0 < x < \frac{1}{\sqrt{5}} \):
\( x > 0 \), \( 5x^2 - 1 < 0 \) ⇒ \( \frac{dy}{dx} = (+)(-) = - \) (decreasing)
For \( x > \frac{1}{\sqrt{5}} \):
\( x > 0 \), \( 5x^2 - 1 > 0 \) ⇒ \( \frac{dy}{dx} = (+)(+) = + \) (increasing)
Step 6: State intervals of strict increase.
\( y \) is strictly increasing on \( \left(-\frac{1}{\sqrt{5}}, 0\right) \) and \( \left(\frac{1}{\sqrt{5}}, \infty\right) \).
Therefore, \( y \) is strictly increasing in \( \mathbf{\left(-\frac{1}{\sqrt{5}}, 0\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)} \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
