Solution: Let the first four observations be \( x_1, x_2, x_3, x_4 \).
Step 1. Given:
\(\bar{X} = \frac{24}{5}, \quad \sigma^2 = \frac{194}{25}\)
Step 2. **The mean of five observations:**
\(\frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = \frac{24}{5} \implies x_1 + x_2 + x_3 + x_4 + x_5 = 24\)
Step 3. The mean of the first four observations:
\(\frac{x_1 + x_2 + x_3 + x_4}{4} = \frac{7}{2} \implies x_1 + x_2 + x_3 + x_4 = 14\)
Step 4. Subtracting (2) from (1):
\(x_5 = 24 - 14 = 10\)
Step 5. Using the formula for variance of the first four observations:
\(\text{Variance} = \frac{\sum (x_i - \bar{x})^2}{n}, \quad \text{where } \bar{x} = \frac{7}{2}\)
After calculating, the variance is: \(\frac{5}{4}\)
The Correct Answer is:\( \frac{5}{4} \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)