The Correct Answer is: \(\frac{80}{9}\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
A geometric progression is the sequence, in which each term is varied by another by a common ratio. The next term of the sequence is produced when we multiply a constant to the previous term. It is represented by: a, ar1, ar2, ar3, ar4, and so on.
Important properties of GP are as follows:
If a1, a2, a3,… is a GP of positive terms then log a1, log a2, log a3,… is an AP (arithmetic progression) and vice versa