The shortest distance \(d\) between two skew lines is given by the formula:
\[ d = \frac{|\vec{b} \times \vec{d}|}{|\vec{d}|} \]
Where: \(\vec{b}\) is the vector joining points on each line, \(\vec{d}\) is the direction vector of the line, and \(\times\) represents the cross product.
For the first line:
\[ \frac{x - \lambda}{2} = \frac{y - 2}{1} = \frac{z - 1}{1} \implies \vec{d_1} = \langle 2, 1, 1 \rangle \]
For the second line:
\[ \frac{x - \frac{1}{\sqrt{3}}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1} \implies \vec{d_2} = \langle 1, -2, 1 \rangle \]
Now, the vector \(\vec{b}\) between the two lines can be written as:
\[ \vec{b} = \langle \lambda - \frac{1}{\sqrt{3}}, 2 - 1, 1 - 2 \rangle = \langle \lambda - \frac{1}{\sqrt{3}}, 1, -1 \rangle \]
The shortest distance formula becomes:
\[ d = \frac{|\vec{b} \times \vec{d_2}|}{|\vec{d_1}|} \]
Compute the cross product \(\vec{b} \times \vec{d_2}\):
\[ \vec{b} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \lambda - \frac{1}{\sqrt{3}} & 1 & -1 \\ 1 & -2 & 1 \end{vmatrix} \]
Expanding this determinant:
\[ = \hat{i}(1 \cdot 1 - (-1) \cdot (-2)) - \hat{j}\left((\lambda - \frac{1}{\sqrt{3}}) \cdot 1 - (-1) \cdot 1\right) + \hat{k}\left((\lambda - \frac{1}{\sqrt{3}}) \cdot (-2) - 1 \cdot 1\right) \]
\[ = \hat{i}(1 - 2) - \hat{j}\left(\lambda - \frac{1}{\sqrt{3}} + 1\right) + \hat{k}\left(-2(\lambda - \frac{1}{\sqrt{3}}) - 1\right) \]
\[ = \hat{i}(-1) - \hat{j}\left(\lambda - \frac{1}{\sqrt{3}} + 1\right) + \hat{k}\left(-2\lambda + \frac{2}{\sqrt{3}} - 1\right) \]
Now, calculate the magnitude \(|\vec{b} \times \vec{d_2}|\) and use it in the formula for \(d = 1\) to solve for \(\lambda\).
After solving, we get \(\lambda = \pm 2\sqrt{3}\).
Given two lines:
L₁: \(\frac{x - \lambda}{-2} = \frac{y - 2}{1} = \frac{z - 1}{1}\)
L₂: \(\frac{x - \sqrt{3}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1}\)
The shortest distance between them is 1. We need to find the sum of all possible values of \(\lambda\).
The shortest distance between two skew lines \(\vec{r} = \vec{a_1} + t\vec{b_1}\) and \(\vec{r} = \vec{a_2} + s\vec{b_2}\) is given by:
\[ d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \]
Step 1: Identify vectors from the given lines.
For L₁: Point \(A_1 = (\lambda, 2, 1)\), Direction vector \(\vec{b_1} = (-2, 1, 1)\)
For L₂: Point \(A_2 = (\sqrt{3}, 1, 2)\), Direction vector \(\vec{b_2} = (1, -2, 1)\)
Step 2: Compute \(\vec{A_1A_2} = \vec{a_2} - \vec{a_1}\).
\[ \vec{A_1A_2} = (\sqrt{3} - \lambda, 1 - 2, 2 - 1) = (\sqrt{3} - \lambda, -1, 1) \]
Step 3: Compute \(\vec{b_1} \times \vec{b_2}\).
\[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = \hat{i}(1 \cdot 1 - 1 \cdot (-2)) - \hat{j}((-2) \cdot 1 - 1 \cdot 1) + \hat{k}((-2) \cdot (-2) - 1 \cdot 1) \] \[ = \hat{i}(1 + 2) - \hat{j}(-2 - 1) + \hat{k}(4 - 1) = (3, 3, 3) \]
So, \(\vec{b_1} \times \vec{b_2} = (3, 3, 3)\)
Step 4: Compute the magnitude \(|\vec{b_1} \times \vec{b_2}|\).
\[ |\vec{b_1} \times \vec{b_2}| = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{27} = 3\sqrt{3} \]
Step 5: Compute the scalar triple product \((\vec{A_1A_2}) \cdot (\vec{b_1} \times \vec{b_2})\).
\[ (\vec{A_1A_2}) \cdot (\vec{b_1} \times \vec{b_2}) = (\sqrt{3} - \lambda, -1, 1) \cdot (3, 3, 3) \] \[ = 3(\sqrt{3} - \lambda) + 3(-1) + 3(1) = 3\sqrt{3} - 3\lambda - 3 + 3 = 3\sqrt{3} - 3\lambda \]
Step 6: Apply the distance formula and set it equal to 1.
\[ d = \frac{|3\sqrt{3} - 3\lambda|}{3\sqrt{3}} = 1 \] \[ \Rightarrow \frac{3|\sqrt{3} - \lambda|}{3\sqrt{3}} = 1 \] \[ \Rightarrow \frac{|\sqrt{3} - \lambda|}{\sqrt{3}} = 1 \] \[ \Rightarrow |\sqrt{3} - \lambda| = \sqrt{3} \]
Step 7: Solve the equation \(|\sqrt{3} - \lambda| = \sqrt{3}\).
\[ \sqrt{3} - \lambda = \sqrt{3} \quad \text{or} \quad \sqrt{3} - \lambda = -\sqrt{3} \] \[ \Rightarrow -\lambda = 0 \quad \text{or} \quad -\lambda = -2\sqrt{3} \] \[ \Rightarrow \lambda = 0 \quad \text{or} \quad \lambda = 2\sqrt{3} \]
Step 8: Find the sum of all possible values of \(\lambda\).
\[ \text{Sum} = 0 + 2\sqrt{3} = 2\sqrt{3} \]
Hence, the sum of all possible values of \(\lambda\) is \(2\sqrt{3}\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
