The shortest distance \(d\) between two skew lines is given by the formula:
\[ d = \frac{|\vec{b} \times \vec{d}|}{|\vec{d}|} \]
Where: \(\vec{b}\) is the vector joining points on each line, \(\vec{d}\) is the direction vector of the line, and \(\times\) represents the cross product.
For the first line:
\[ \frac{x - \lambda}{2} = \frac{y - 2}{1} = \frac{z - 1}{1} \implies \vec{d_1} = \langle 2, 1, 1 \rangle \]
For the second line:
\[ \frac{x - \frac{1}{\sqrt{3}}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1} \implies \vec{d_2} = \langle 1, -2, 1 \rangle \]
Now, the vector \(\vec{b}\) between the two lines can be written as:
\[ \vec{b} = \langle \lambda - \frac{1}{\sqrt{3}}, 2 - 1, 1 - 2 \rangle = \langle \lambda - \frac{1}{\sqrt{3}}, 1, -1 \rangle \]
The shortest distance formula becomes:
\[ d = \frac{|\vec{b} \times \vec{d_2}|}{|\vec{d_1}|} \]
Compute the cross product \(\vec{b} \times \vec{d_2}\):
\[ \vec{b} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \lambda - \frac{1}{\sqrt{3}} & 1 & -1 \\ 1 & -2 & 1 \end{vmatrix} \]
Expanding this determinant:
\[ = \hat{i}(1 \cdot 1 - (-1) \cdot (-2)) - \hat{j}\left((\lambda - \frac{1}{\sqrt{3}}) \cdot 1 - (-1) \cdot 1\right) + \hat{k}\left((\lambda - \frac{1}{\sqrt{3}}) \cdot (-2) - 1 \cdot 1\right) \]
\[ = \hat{i}(1 - 2) - \hat{j}\left(\lambda - \frac{1}{\sqrt{3}} + 1\right) + \hat{k}\left(-2(\lambda - \frac{1}{\sqrt{3}}) - 1\right) \]
\[ = \hat{i}(-1) - \hat{j}\left(\lambda - \frac{1}{\sqrt{3}} + 1\right) + \hat{k}\left(-2\lambda + \frac{2}{\sqrt{3}} - 1\right) \]
Now, calculate the magnitude \(|\vec{b} \times \vec{d_2}|\) and use it in the formula for \(d = 1\) to solve for \(\lambda\).
After solving, we get \(\lambda = \pm 2\sqrt{3}\).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: