Let \(\vec{a}=α\hat{i}+\hat{j}−\hat{k}\ and\ \vec{b}=2\hat{i}+\hat{j}−α\hat{k},α>0\). If the projection of \(\vec{a}×\vec{b}\) on the vector \(−\hat{i}+2\hat{j}−2\hat{k}\) is 30, then α is equal to
Let the hyperbola \(H:\frac{x^2}{a^2}−y^2=1\)and the ellipse \(E:3x^2+4y^2=12\) be such that the length of latus rectum of H is equal to the length of latus rectum of E. If eH and eE are the eccentricities of H and E respectively, then the value of \(12 (e^{2}_H+e^{2}_E)\) is equal to _____ .
The area of the region\(\left\{(x,y) : y² ≤ 8x, y ≥ \sqrt2x, x ≥ 1 \right\}\)is
Let y = y(x) be the solution of the differential equation\(x ( 1 - x² ) \frac{dy}{dx} + ( 3x²y - y - 4x³ ) = 0, x > 1\)with y(2) = –2. Then y(3) is equal to
Let the solution curve y = y(x) of the differential equation\([ \frac{x}{\sqrt{x² -y²}} + e^\frac{y}{x} ] x \frac{dy}{dx} = x + [ \frac{x}{\sqrt{x² -y²}} + e^\frac{y}{x} ]y\)pass through the points (1, 0) and (2α, α), α> 0. Then α is equal to
Let\(\vec{a}=\hat{i} - 2\hat{j} + 3\hat{k}, \vec{b}=\hat{i} - \hat{j} + \hat{k} \) and \(\vec{c}\)be a vector such that\(\vec{a} + (\vec{b}×\vec{c}) = \vec{0}\) and \(\vec{b}.\vec{c} = 5.\)Then the value of 3(\(\vec{c}.\vec{a}\)) is equal to
If y = y (x) is the solution of the differential equation\((1 + e^{2x})\frac{dy}{dx} + 2(1 + y^2)e^x = 0\)and y(0) = 0, then\(6 \left( y'(0) + \left( \log_e\left(\sqrt{3}\right) \right)^2 \right)\)is equal to
\(\lim_{{x \to \frac{1}{\sqrt{2}}}} \frac{\sin(\cos^{-1}(x)) - x}{1 - \tan(\cos^{-1}(x))}\)is equal to :
If the inverse trigonometric functions take principal values, then\(cos^{-1} ( \frac{3}{10} cos (tan^{-1} (\frac{4}{3})) + \frac{2}{5} sin (tan^{-1} (\frac{4}{3})))\)is equal to :
The normal to the hyperbola\(\frac{x²}{a²} - \frac{y²}{9} = 1\)at the point (8, 3√3) on it passes through the point:
If \(∫\frac{1}{x}\) \(√{\frac{1-x}{1+x}}\) dx = \(g(x) + c,g(1) = 0\) , then g \((\frac{1}{2})\) is equal to