Since \( \log_e a, \log_e b, \log_e c \) are in an A.P., we have:
\(b^2 = ac\)
Also, since \( \log_e \left( \frac{a}{2b} \right), \log_e \left( \frac{2b}{3c} \right), \log_e \left( \frac{3c}{a} \right) \) are in an A.P., we get:
\(\left( \frac{2b}{3c} \right)^2 = \frac{a}{2b} \times \frac{3c}{a}\)
\(\implies \frac{b}{c} = \frac{3}{2}\)
Substituting into equation (1):
\(b^2 = a \times \frac{2b}{3}\)
\(\implies \frac{a}{b} = \frac{3}{2}\)
Thus, \( a : b : c = 9 : 6 : 4 \).
The Correct Answer is: 9 : 6 : 4
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)