Since \( \log_e a, \log_e b, \log_e c \) are in an A.P., we have:
\(b^2 = ac\)
Also, since \( \log_e \left( \frac{a}{2b} \right), \log_e \left( \frac{2b}{3c} \right), \log_e \left( \frac{3c}{a} \right) \) are in an A.P., we get:
\(\left( \frac{2b}{3c} \right)^2 = \frac{a}{2b} \times \frac{3c}{a}\)
\(\implies \frac{b}{c} = \frac{3}{2}\)
Substituting into equation (1):
\(b^2 = a \times \frac{2b}{3}\)
\(\implies \frac{a}{b} = \frac{3}{2}\)
Thus, \( a : b : c = 9 : 6 : 4 \).
The Correct Answer is: 9 : 6 : 4
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: