Given:
\(g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \quad \text{and} \quad f''(x) > 0 \quad \text{for } x \in (0, 3).\)
Since \(f''(x) > 0\), \(f'(x)\) is an increasing function.
To find intervals where \(g(x)\) is decreasing, we differentiate:
\(g'(x) = 3 \times \frac{1}{3} f'\left(\frac{x}{3}\right) - f'(3 - x) = f'\left(\frac{x}{3}\right) - f'(3 - x).\)
For \(g(x)\) to be decreasing in \((0, \alpha)\):
\(g'(x) < 0 \implies f'\left(\frac{x}{3}\right) < f'(3 - x).\)
Setting equality for the transition point:
\(f'\left(\frac{\alpha}{3}\right) = f'(3 - \alpha).\)
From symmetry and the increasing nature of \(f'\), we find:
\(\alpha = \frac{9}{4}.\)
Calculating \(8\alpha\):
\(8\alpha = 8 \times \frac{9}{4} = 18.\)
The Correct answer is: 18
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)