To solve this problem, we need to analyze the function \( g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \) and the given conditions. Let's break this down step by step:
Therefore, the value of \( 8\alpha \) is 18. The correct answer is 18.
Given:
\(g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \quad \text{and} \quad f''(x) > 0 \quad \text{for } x \in (0, 3).\)
Since \(f''(x) > 0\), \(f'(x)\) is an increasing function.
To find intervals where \(g(x)\) is decreasing, we differentiate:
\(g'(x) = 3 \times \frac{1}{3} f'\left(\frac{x}{3}\right) - f'(3 - x) = f'\left(\frac{x}{3}\right) - f'(3 - x).\)
For \(g(x)\) to be decreasing in \((0, \alpha)\):
\(g'(x) < 0 \implies f'\left(\frac{x}{3}\right) < f'(3 - x).\)
Setting equality for the transition point:
\(f'\left(\frac{\alpha}{3}\right) = f'(3 - \alpha).\)
From symmetry and the increasing nature of \(f'\), we find:
\(\alpha = \frac{9}{4}.\)
Calculating \(8\alpha\):
\(8\alpha = 8 \times \frac{9}{4} = 18.\)
The Correct answer is: 18
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.