To solve this problem, we need to analyze the function \( g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \) and the given conditions. Let's break this down step by step:
Therefore, the value of \( 8\alpha \) is 18. The correct answer is 18.
Given:
\(g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \quad \text{and} \quad f''(x) > 0 \quad \text{for } x \in (0, 3).\)
Since \(f''(x) > 0\), \(f'(x)\) is an increasing function.
To find intervals where \(g(x)\) is decreasing, we differentiate:
\(g'(x) = 3 \times \frac{1}{3} f'\left(\frac{x}{3}\right) - f'(3 - x) = f'\left(\frac{x}{3}\right) - f'(3 - x).\)
For \(g(x)\) to be decreasing in \((0, \alpha)\):
\(g'(x) < 0 \implies f'\left(\frac{x}{3}\right) < f'(3 - x).\)
Setting equality for the transition point:
\(f'\left(\frac{\alpha}{3}\right) = f'(3 - \alpha).\)
From symmetry and the increasing nature of \(f'\), we find:
\(\alpha = \frac{9}{4}.\)
Calculating \(8\alpha\):
\(8\alpha = 8 \times \frac{9}{4} = 18.\)
The Correct answer is: 18
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
