Given:
\(g(x) = 3f\left(\frac{x}{3}\right) + f(3 - x) \quad \text{and} \quad f''(x) > 0 \quad \text{for } x \in (0, 3).\)
Since \(f''(x) > 0\), \(f'(x)\) is an increasing function.
To find intervals where \(g(x)\) is decreasing, we differentiate:
\(g'(x) = 3 \times \frac{1}{3} f'\left(\frac{x}{3}\right) - f'(3 - x) = f'\left(\frac{x}{3}\right) - f'(3 - x).\)
For \(g(x)\) to be decreasing in \((0, \alpha)\):
\(g'(x) < 0 \implies f'\left(\frac{x}{3}\right) < f'(3 - x).\)
Setting equality for the transition point:
\(f'\left(\frac{\alpha}{3}\right) = f'(3 - \alpha).\)
From symmetry and the increasing nature of \(f'\), we find:
\(\alpha = \frac{9}{4}.\)
Calculating \(8\alpha\):
\(8\alpha = 8 \times \frac{9}{4} = 18.\)
The Correct answer is: 18
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: