Starting with the differential equation:
\(x \cos \left( \frac{y}{x} \right) \frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\)
Step 1. Divide both sides by \( x^2 \cos \left( \frac{y}{x} \right) \):
\(\cos \left( \frac{y}{x} \right) \left( \frac{y}{x} \frac{dy}{dx} - \frac{y}{x^2} \right) = \frac{1}{x}\)
Step 2. Let \( \frac{y}{x} = t \), then \( y = tx \) and \( \frac{dy}{dx} = t + x \frac{dt}{dx} \), substituting into the equation:
\(\cos t \left( \frac{dt}{dx} \right) = \frac{1}{x}\)
Step 3. Integrate both sides:
\(\sin t = \ln |x| + c\)
\(\sin \frac{y}{x} = \ln |x| + c\)
Step 4. Using the initial condition \( y(1) = \frac{\sqrt{3}}{2} \), we find \( c = \frac{\sqrt{3}}{2} \).
Thus, \( \alpha = \sqrt{3} \implies \alpha^2 = 3\)
The Correct Answer is: 3
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Match List-I with List-II: List-I