Starting with the differential equation:
\(x \cos \left( \frac{y}{x} \right) \frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\)
Step 1. Divide both sides by \( x^2 \cos \left( \frac{y}{x} \right) \):
\(\cos \left( \frac{y}{x} \right) \left( \frac{y}{x} \frac{dy}{dx} - \frac{y}{x^2} \right) = \frac{1}{x}\)
Step 2. Let \( \frac{y}{x} = t \), then \( y = tx \) and \( \frac{dy}{dx} = t + x \frac{dt}{dx} \), substituting into the equation:
\(\cos t \left( \frac{dt}{dx} \right) = \frac{1}{x}\)
Step 3. Integrate both sides:
\(\sin t = \ln |x| + c\)
\(\sin \frac{y}{x} = \ln |x| + c\)
Step 4. Using the initial condition \( y(1) = \frac{\sqrt{3}}{2} \), we find \( c = \frac{\sqrt{3}}{2} \).
Thus, \( \alpha = \sqrt{3} \implies \alpha^2 = 3\)
The Correct Answer is: 3
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: