To solve the given differential equation:
\[ x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x \]
We note that it is in a format that can be addressed by assuming a substitution:
Let \( z = \frac{y}{x} \). This gives \( y = zx \) and differentiating with respect to \( x \), we have:
\(\frac{dy}{dx} = z + x \frac{dz}{dx}\)
Substitute in the differential equation:
\[ x \cos(z) (z + x \frac{dz}{dx}) = zx \cos(z) + x \]
On simplifying, we get:
\[ xz \cos(z) + x^2 \cos(z) \frac{dz}{dx} = zx \cos(z) + x \]
Cancel terms and simplify:
\[ x^2 \cos(z) \frac{dz}{dx} = x(1 - z \cos(z)) \]
Which simplifies to:
\[ \frac{dz}{dx} = \frac{1 - z \cos(z)}{x \cos(z)} \]
Let's separate the variables and integrate:
\[ \int \frac{\cos(z)}{1 - z \cos(z)} \, dz = \int \frac{1}{x} \, dx \]
On the right side, integrate:
\[ \int \frac{1}{x} \, dx = \log_e |x| + C \]
Let's consider the solution format provided in the question:
\[ \sin\left(\frac{y}{x}\right) = \log_e |x| + \frac{\alpha}{2} \]
At point \( x = 1, y = \frac{\pi}{3} \), substituting these values gives:
\[ \sin\left(\frac{\pi}{3}\right) = \log_e |1| + \frac{\alpha}{2} \]
Since \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\) and \(\log_e |1| = 0\), we have:
\[ \frac{\sqrt{3}}{2} = 0 + \frac{\alpha}{2} \]
This implies:
\[ \alpha = \sqrt{3} \]
Thus, \(\alpha^2 = (\sqrt{3})^2 = 3\).
Therefore, the correct answer is 3.
Starting with the differential equation:
\(x \cos \left( \frac{y}{x} \right) \frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\)
Step 1. Divide both sides by \( x^2 \cos \left( \frac{y}{x} \right) \):
\(\cos \left( \frac{y}{x} \right) \left( \frac{y}{x} \frac{dy}{dx} - \frac{y}{x^2} \right) = \frac{1}{x}\)
Step 2. Let \( \frac{y}{x} = t \), then \( y = tx \) and \( \frac{dy}{dx} = t + x \frac{dt}{dx} \), substituting into the equation:
\(\cos t \left( \frac{dt}{dx} \right) = \frac{1}{x}\)
Step 3. Integrate both sides:
\(\sin t = \ln |x| + c\)
\(\sin \frac{y}{x} = \ln |x| + c\)
Step 4. Using the initial condition \( y(1) = \frac{\sqrt{3}}{2} \), we find \( c = \frac{\sqrt{3}}{2} \).
Thus, \( \alpha = \sqrt{3} \implies \alpha^2 = 3\)
The Correct Answer is: 3
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).