Given:
\( A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix} \), \( B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
First, find:
\( \text{det}(A) = (\sqrt{2}) \times (\sqrt{2}) - (1) \times (-1) = 3 \)
\( \text{det}(B) = 1 \)
Now, compute \( C = ABA^T \). Since \( \text{det}(C) = (\text{det}(A))^2 \times \text{det}(B) \):
\( \text{det}(C) = 3^2 \times 1 = 9 \)
For \( X = A^T C^2 A \), we use:
\( \text{det}(X) = [\text{det}(A^T)] \times [\text{det}(C^2)] \times [\text{det}(A)] \)
Since \( \text{det}(A^T) = \text{det}(A) \) and \( \text{det}(C^2) = (\text{det}(C))^2 \):
\( \text{det}(X) = (\text{det}(A)) \times (\text{det}(C))^2 \times (\text{det}(A)) \)
\( \text{det}(X) = 3 \times 9^2 \times 3 = 729 \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)