Given:
\( A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix} \), \( B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
First, find:
\( \text{det}(A) = (\sqrt{2}) \times (\sqrt{2}) - (1) \times (-1) = 3 \)
\( \text{det}(B) = 1 \)
Now, compute \( C = ABA^T \). Since \( \text{det}(C) = (\text{det}(A))^2 \times \text{det}(B) \):
\( \text{det}(C) = 3^2 \times 1 = 9 \)
For \( X = A^T C^2 A \), we use:
\( \text{det}(X) = [\text{det}(A^T)] \times [\text{det}(C^2)] \times [\text{det}(A)] \)
Since \( \text{det}(A^T) = \text{det}(A) \) and \( \text{det}(C^2) = (\text{det}(C))^2 \):
\( \text{det}(X) = (\text{det}(A)) \times (\text{det}(C))^2 \times (\text{det}(A)) \)
\( \text{det}(X) = 3 \times 9^2 \times 3 = 729 \)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: