Given:
\( A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix} \), \( B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
First, find:
\( \text{det}(A) = (\sqrt{2}) \times (\sqrt{2}) - (1) \times (-1) = 3 \)
\( \text{det}(B) = 1 \)
Now, compute \( C = ABA^T \). Since \( \text{det}(C) = (\text{det}(A))^2 \times \text{det}(B) \):
\( \text{det}(C) = 3^2 \times 1 = 9 \)
For \( X = A^T C^2 A \), we use:
\( \text{det}(X) = [\text{det}(A^T)] \times [\text{det}(C^2)] \times [\text{det}(A)] \)
Since \( \text{det}(A^T) = \text{det}(A) \) and \( \text{det}(C^2) = (\text{det}(C))^2 \):
\( \text{det}(X) = (\text{det}(A)) \times (\text{det}(C))^2 \times (\text{det}(A)) \)
\( \text{det}(X) = 3 \times 9^2 \times 3 = 729 \)
Given matrices \( A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix} \), \( B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \), \( C = ABA^\top \) and \( X = A^\top C^2 A \), find \( \det(X) \).
Properties of determinants:
Step 1: Compute \( \det(A) \).
\[ \det(A) = (\sqrt{2})(\sqrt{2}) - (1)(-1) = 2 + 1 = 3 \]Step 2: Compute \( \det(B) \).
\[ \det(B) = (1)(1) - (0)(1) = 1 \]Step 3: Express \( \det(X) \) in terms of known determinants.
Given \( C = ABA^\top \), and \( X = A^\top C^2 A \).
\[ \det(X) = \det(A^\top C^2 A) = \det(A^\top) \cdot \det(C^2) \cdot \det(A) \] \[ = \det(A) \cdot (\det(C))^2 \cdot \det(A) = (\det(A))^2 \cdot (\det(C))^2 \]Step 4: Compute \( \det(C) \).
\[ C = ABA^\top \Rightarrow \det(C) = \det(A) \cdot \det(B) \cdot \det(A^\top) \] \[ = \det(A) \cdot \det(B) \cdot \det(A) = (\det(A))^2 \cdot \det(B) \] \[ = (3)^2 \cdot 1 = 9 \]Step 5: Compute \( \det(X) \).
\[ \det(X) = (\det(A))^2 \cdot (\det(C))^2 = (3)^2 \cdot (9)^2 = 9 \cdot 81 = 729 \]Therefore, \( \det(X) = \mathbf{729} \).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
