Solution: We need to count the ways of arranging 8 identical books into 4 identical shelves, allowing any number of shelves to be empty.
Step 1. 3 Shelves Empty: Only one shelf holds all 8 books:
\((8, 0, 0, 0) \implies 1 \text{ way}\)
Step 2. 2 Shelves Empty: Two shelves hold the books in pairs of configurations:
\((7, 1, 0, 0), (6, 2, 0, 0), (5, 3, 0, 0), (4, 4, 0, 0) \implies 4 \text{ ways}\)
Step 3. 1 Shelf Empty: Three shelves hold the books in possible configurations:
\((6, 1, 1, 0), (5, 2, 1, 0), (4, 3, 1, 0), (4, 2, 2, 0), (3, 3, 2, 0) \implies 5 \text{ ways}\)
Step 4. 0 Shelves Empty: All four shelves hold the books in possible configurations:
\((5, 1, 1, 1), (4, 2, 1, 1), (3, 3, 1, 1), (3, 2, 2, 1), (2, 2, 2, 2) \implies 5 \text{ ways}\)
Adding up all the ways:
\(\text{Total} = 1 + 4 + 5 + 5 = 15 \text{ ways}\)
The Correct Answer is: 15 ways
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)