For the function composition \(f \circ g(x)\) to be defined, \(g(x)\) must be in the domain of \(f\). Given:
\(f(g(x)) = \frac{2g(x) + 3}{2g(x) + 1}.\)
The domain of \(f\) excludes \(x = -\frac{3}{2}\). Therefore, \(2g(x) + 1 \neq 0\). Solving:
\(2\left(\frac{|x| + 1}{2x + 5}\right) + 1 = 0.\)
Simplifying:
\(\frac{2(|x| + 1)}{2x + 5} + 1 = 0 \implies |x| + 1 = -\frac{2x + 5}{2}.\)
This yields no valid solutions in \(\mathbb{R}\). Therefore, the domain is:
\(\mathbb{R} \setminus \left\{\frac{-5}{2}\right\}.\)
Thus, the correct answer is: \( R \setminus \left\{ -\frac{5}{2} \right\} \)
Let the domain of the function \( f(x) = \log_{2} \log_{4} \log_{6}(3 + 4x - x^{2}) \) be \( (a, b) \). If \[ \int_{0}^{b-a} [x^{2}] \, dx = p - \sqrt{q} - \sqrt{r}, \quad p, q, r \in \mathbb{N}, \, \gcd(p, q, r) = 1, \] where \([ \, ]\) is the greatest integer function, then \( p + q + r \) is equal to
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: