For the function composition \(f \circ g(x)\) to be defined, \(g(x)\) must be in the domain of \(f\). Given:
\(f(g(x)) = \frac{2g(x) + 3}{2g(x) + 1}.\)
The domain of \(f\) excludes \(x = -\frac{3}{2}\). Therefore, \(2g(x) + 1 \neq 0\). Solving:
\(2\left(\frac{|x| + 1}{2x + 5}\right) + 1 = 0.\)
Simplifying:
\(\frac{2(|x| + 1)}{2x + 5} + 1 = 0 \implies |x| + 1 = -\frac{2x + 5}{2}.\)
This yields no valid solutions in \(\mathbb{R}\). Therefore, the domain is:
\(\mathbb{R} \setminus \left\{\frac{-5}{2}\right\}.\)
Thus, the correct answer is: \( R \setminus \left\{ -\frac{5}{2} \right\} \)
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)