Given ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \( a > b \), eccentricity \( e_1 = \frac{1}{\sqrt{2}} \), and latus rectum length \( \sqrt{14} \). We need the square of the eccentricity of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \).
For ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \( a > b \), eccentricity \( e_1 \) satisfies \( b^2 = a^2(1 - e_1^2) \), and length of latus rectum is \( \frac{2b^2}{a} \).
For hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), eccentricity \( e_2 \) satisfies \( b^2 = a^2(e_2^2 - 1) \).
Step 1: Use ellipse eccentricity to relate \( a \) and \( b \).
\[ e_1 = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad b^2 = a^2(1 - e_1^2) = a^2\left(1 - \frac12\right) = \frac{a^2}{2} \]
Step 2: Use latus rectum length of ellipse.
\[ \text{Latus rectum} = \frac{2b^2}{a} = \sqrt{14} \] \[ \frac{2 \cdot \frac{a^2}{2}}{a} = \sqrt{14} \quad \Rightarrow \quad \frac{a^2}{a} = \sqrt{14} \quad \Rightarrow \quad a = \sqrt{14} \]
Step 3: Find \( b^2 \).
\[ b^2 = \frac{a^2}{2} = \frac{14}{2} = 7 \]
Step 4: Find eccentricity \( e_2 \) of hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \).
For this hyperbola, \( b^2 = a^2(e_2^2 - 1) \).
\[ 7 = 14(e_2^2 - 1) \quad \Rightarrow \quad e_2^2 - 1 = \frac12 \quad \Rightarrow \quad e_2^2 = \frac12 + 1 = \frac32 \]
Step 5: The square of the eccentricity is \( e_2^2 \).
Therefore, the square of the eccentricity of the hyperbola is \( \mathbf{\frac{3}{2}} \).
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
The IUPAC name of the following compound is:

Which of the following is the correct IUPAC name of the given organic compound (X)?
The structure of compound $ X $ is as follows:
$ \text{H}_3\text{C} - \text{CH}_3 - \text{CH} = \text{CH} - \text{H} - \text{Br} $