To solve the given problem, we need to determine the value of \( |\hat{u} - \vec{v}|^2 \), where the vector \( \hat{u} = x\hat{i} + y\hat{j} + z\hat{k} \) is a unit vector and makes specified angles with other given vectors. The vector \( \vec{v} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \) is also defined.
\(\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\)
Thus, the value of \( |\hat{u} - \vec{v}|^2 \) is \(\frac{5}{2}\), confirming the correct answer is \(\frac{5}{2}\).
Given that \( \vec{u} = x\hat{i} + y\hat{j} + z\hat{k} \) is a unit vector, it satisfies: \(x^2 + y^2 + z^2 = 1\)
Step 1. Using the angle conditions:
- The angle between \( \vec{u} \) and \( \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} \) is \( \frac{\pi}{2} \):
\(\vec{u} \cdot \left( \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} \right) = 0 \implies \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = 0\)
\(x + y = 0\) ---(1)
- The angle between \( \vec{u} \) and \( \frac{\hat{i}}{\sqrt{2}} + \hat{j} + \frac{\hat{k}}{\sqrt{2}} \) is \( \frac{\pi}{3} \):
\(\vec{u} \cdot \left( \frac{\hat{i}}{\sqrt{2}} + \hat{j} + \frac{\hat{k}}{\sqrt{2}} \right) = \frac{1}{2} \implies \frac{x}{\sqrt{2}} + y + \frac{z}{\sqrt{2}} = \frac{1}{2}\)
\(x + \sqrt{2}y + z = \frac{\sqrt{2}}{2}\)
- The angle between \( \vec{u} \) and \( \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} + \hat{k} \) is \( \frac{\pi}{2} \):
\(\vec{u} \cdot \left( \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} + \hat{k} \right) = 0 \implies \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} + z = 0\)
\(x + y + \sqrt{2}z = 0\)
Step 2. Solving the system of equations:** From equations (1), (2), and (3):
- Substitute \( z = -x \) in (2):
\(x + \sqrt{2}y - x = \frac{\sqrt{2}}{2} \implies y = \frac{1}{\sqrt{2}}\)
- Substitute \( y = \frac{1}{\sqrt{2}} \) and \( z = -x \) in (3):
\(x + \frac{1}{\sqrt{2}} + \sqrt{2}(-x) = 0 \implies x = -\frac{1}{2\sqrt{2}}, \, z = \frac{1}{2\sqrt{2}}\)
Step 3. Calculate \( |\vec{u} - \vec{v}|^2 \):
\(|\vec{u} - \vec{v}|^2 = \left( x - \frac{1}{\sqrt{2}} \right)^2 + \left( y - \frac{1}{\sqrt{2}} \right)^2 + \left( z - \frac{1}{\sqrt{2}} \right)^2\)
Substituting \( x = -\frac{1}{2\sqrt{2}}, \, y = \frac{1}{\sqrt{2}}, \, z = \frac{1}{2\sqrt{2}} \):
\(|\vec{u} - \vec{v}|^2 = \frac{5}{2}\)
The Correct answer is :\( \frac{5}{2} \).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 