Calculate sums:
\[ \sum f_i = 22, \quad \sum f_i x_i = 176, \quad \sum f_i x_i^2 = 2048. \]
Calculate the mean \( \bar{x} \):
\[ \bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{176}{22} = 8. \]
Calculate the variance \( \sigma^2 \):
\[ \sigma^2 = \frac{1}{N} \sum f_i x_i^2 - \bar{x}^2, \]
where \( N = \sum f_i \).
Plugging in values:
\[ \sigma^2 = \frac{1}{22} \times 2048 - (8)^2 = \frac{2048}{22} - 64. \]
Compute:
\[ \frac{2048}{22} = 93.09090909 \quad \text{and} \quad \sigma^2 = 93.09090909 - 64 = 29.09090909. \]
Thus, the variance is: 29.09090909