Finding \(\tan(A + B)\), we get:
\(\implies \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\)
Substituting the values:
\(\implies \tan(A + B) = \frac{\frac{1}{x^2+x+1} + \frac{\sqrt{x}}{\sqrt{x^2+x+1}}}{1 - \frac{\sqrt{x}}{x^2+x+1}}\)
Simplifying the numerator and denominator:
\(\implies \tan(A + B) = \frac{(1 + x)(\sqrt{x^2+x+1})}{(x^2+x)(\sqrt{x})}\)
Rewriting:
\(\tan(A + B) = \frac{\sqrt{x^2 + x + 1}}{x\sqrt{x}} = \tan C\)
Therefore:
\(A + B = C\)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)