Finding \(\tan(A + B)\), we get:
\(\implies \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\)
Substituting the values:
\(\implies \tan(A + B) = \frac{\frac{1}{x^2+x+1} + \frac{\sqrt{x}}{\sqrt{x^2+x+1}}}{1 - \frac{\sqrt{x}}{x^2+x+1}}\)
Simplifying the numerator and denominator:
\(\implies \tan(A + B) = \frac{(1 + x)(\sqrt{x^2+x+1})}{(x^2+x)(\sqrt{x})}\)
Rewriting:
\(\tan(A + B) = \frac{\sqrt{x^2 + x + 1}}{x\sqrt{x}} = \tan C\)
Therefore:
\(A + B = C\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: