To solve the given problem, we need to find \( 2\alpha - \beta \) so that the following limit holds:
Hence, the correct answer is 5.
Given:
\(\lim_{x \to 0} \frac{3 + \alpha \sin x + \beta \cos x + \log_e(1 - x)}{3 \tan^2 x} = \frac{1}{3}.\)
Expanding the trigonometric and logarithmic functions around \(x = 0\) using Taylor series:
\(\sin x \approx x, \quad \cos x \approx 1 - \frac{x^2}{2}, \quad \log_e(1 - x) \approx -x - \frac{x^2}{2}.\)
Substituting these approximations:
\(\lim_{x \to 0} \frac{3 + \alpha x + \beta \left(1 - \frac{x^2}{2}\right) - x - \frac{x^2}{2}}{3 \left(\frac{x^3}{3} + \ldots\right)^2}.\)
Simplifying the numerator:
\(3 + \beta + (\alpha - 1)x + \left(-\frac{\beta}{2} - \frac{1}{2}\right)x^2.\)
For the limit to be finite and equal to \(\frac{1}{3}\), the terms involving \(x\) and higher powers of \(x\) must vanish. This gives:
\(\alpha - 1 = 0 \implies \alpha = 1,\)
and:
\(3 + \beta = 0 \implies \beta = -3.\)
Substituting these values:
\(2\alpha - \beta = 2 \times 1 - (-3) = 2 + 3 = 5.\)
Thus, the correct answer is: 5
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
