Given:
\(\lim_{x \to 0} \frac{3 + \alpha \sin x + \beta \cos x + \log_e(1 - x)}{3 \tan^2 x} = \frac{1}{3}.\)
Expanding the trigonometric and logarithmic functions around \(x = 0\) using Taylor series:
\(\sin x \approx x, \quad \cos x \approx 1 - \frac{x^2}{2}, \quad \log_e(1 - x) \approx -x - \frac{x^2}{2}.\)
Substituting these approximations:
\(\lim_{x \to 0} \frac{3 + \alpha x + \beta \left(1 - \frac{x^2}{2}\right) - x - \frac{x^2}{2}}{3 \left(\frac{x^3}{3} + \ldots\right)^2}.\)
Simplifying the numerator:
\(3 + \beta + (\alpha - 1)x + \left(-\frac{\beta}{2} - \frac{1}{2}\right)x^2.\)
For the limit to be finite and equal to \(\frac{1}{3}\), the terms involving \(x\) and higher powers of \(x\) must vanish. This gives:
\(\alpha - 1 = 0 \implies \alpha = 1,\)
and:
\(3 + \beta = 0 \implies \beta = -3.\)
Substituting these values:
\(2\alpha - \beta = 2 \times 1 - (-3) = 2 + 3 = 5.\)
Thus, the correct answer is: 5
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)