\( I = \int_{0}^{\frac{\pi}{2}} \frac{x \, dx}{\sin^4(2x) + \cos^4(2x)}\)
Let \(2x = t\), then \(dx = \frac{1}{2} dt\), \[ I = \frac{1}{4} \int_{0}^{\pi} \frac{t \, dt}{\sin^4 t + \cos^4 t} \] Using symmetry: \[ I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{t + \frac{\pi}{2} - t}{\sin^4 t + \cos^4 t} \, dt \] \[ I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2}}{\sin^4 t + \cos^4 t} \, dt - I \] \[ 2I = \frac{\pi}{8} \int_{0}^{\frac{\pi}{2}} \frac{dt}{\sin^4 t + \cos^4 t} \] Let \(\tan t = y\), then \(\sec^2 t \, dt = dy\): \[ 2I = \frac{\pi}{8} \int_{0}^{\infty} \frac{(1 + y^2) \, dy}{1 + y^4} \] \[ 2I = \frac{\pi}{8} \int_{0}^{\infty} \frac{dy}{y^2 + 1} \] Let \(y = p\), then: \[ I = \frac{\pi}{16} \int_{0}^{\infty} \frac{dp}{p^2 + (\sqrt{2})^2} \] Using the standard integral formula: \[ I = \frac{\pi}{16 \sqrt{2}} \left[ \tan^{-1} \left( \frac{p}{\sqrt{2}} \right) \right]_{0}^{\infty} \] \[ I = \frac{\pi}{16 \sqrt{2}} \cdot \frac{\pi}{2} \] \[ I = \frac{\pi^2}{16 \sqrt{2}} \]
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: