Define the events:
- \( P(A) \): Probability that the number is a multiple of 4.
- \( P(B) \): Probability that the number is a multiple of 6.
- \( P(C) \): Probability that the number is a multiple of 7.
Step 1. Calculate \( P(A) \), \( P(B) \), and \( P(C) \):
\(P(A) = \frac{12}{50}, \, P(B) = \frac{8}{50}, \, P(C) = \frac{7}{50}\)
Step 2. Calculate the probabilities of intersections:
\(P(A \cap B) = \frac{4}{50}, \, P(B \cap C) = \frac{1}{50}, \, P(A \cap C) = \frac{1}{50}\)
\(P(A \cap B \cap C) = 0\)
Step 3. Apply the formula for the union of three events:
\(P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)\)
Substituting values:
\(P(A \cup B \cup C) = \frac{12}{50} + \frac{8}{50} + \frac{7}{50} - \frac{4}{50} - \frac{1}{50} - \frac{1}{50} + 0\)
\(= \frac{21}{50}\)
Thus, the probability that the chosen integer is a multiple of at least one of 4, 6, or 7 is \( \frac{21}{50} \).
The Correct Answer is: \( \frac{21}{50} \)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: