Let S=S=S={n∈NIn3+3n2+5n+3n∈NIn^3+3n^2+5n+3n∈NIn3+3n2+5n+3 is not divisible by 333}.Then, which of the following statements is true about SSS
Negation of (p⇒q)⇒(q⇒p) is
Let P(S)P(S)P(S) denote the power set of S={1,2,3,…,10}S = \{1, 2, 3, \ldots, 10\}S={1,2,3,…,10}. Define the relations R1R_1R1 and R2R_2R2 on P(S)P(S)P(S) as AR1BA R_1 BAR1B if (A∩Bc)∪(B∩Ac)=,(A \cap B^c) \cup (B \cap A^c) = ,(A∩Bc)∪(B∩Ac)=,and AR2BA R_2 BAR2B ifA∪Bc=B∪Ac,A \cup B^c = B \cup A^c,A∪Bc=B∪Ac,for all A,B∈P(S)A, B \in P(S)A,B∈P(S). Then: