Let us denote 4W4B as the case where the bag contains 4 white and 4 black balls. The probability of drawing 2 white and 2 black balls from such a bag is given by:
\[ P(4W4B / 2W2B) = \frac{P(4W4B) \times P(2W2B / 4W4B)}{P(4W4B) \times P(2W2B / 4W4B) + P(3W5B) \times P(2W2B / 3W5B) + \dots + P(0W8B) \times P(2W2B / 0W8B)} \] \[ = \frac{\frac{1}{5} \times \binom{4}{2} \times \binom{4}{2} / \binom{8}{4}}{\frac{1}{5} \times \binom{2}{2} \times \binom{6}{2} / \binom{8}{4} + \frac{1}{5} \times \binom{3}{2} \times \binom{5}{2} / \binom{8}{4} + \dots + \frac{1}{5} \times \binom{6}{2} \times \binom{2}{2} / \binom{8}{4}} \] \[ = \frac{\frac{1}{5} \times \frac{4C_2 \times 4C_2}{8C_4}}{\frac{1}{5} \times \frac{2C_2 \times 6C_2}{8C_4} + \frac{1}{5} \times \frac{3C_2 \times 5C_2}{8C_4} + \dots + \frac{1}{5} \times \frac{6C_2 \times 2C_2}{8C_4}} \] \[ = \frac{\frac{1}{5} \times \frac{6 \times 6}{70}}{\frac{1}{5} \times \frac{15}{70} + \frac{1}{5} \times \frac{30}{70} + \dots + \frac{1}{5} \times \frac{15}{70}} \] \[ = \frac{\frac{1}{5} \times \frac{6 \times 6}{70}}{\frac{1}{5} \times \frac{15}{70} + \frac{1}{5} \times \frac{30}{70} + \dots + \frac{1}{5} \times \frac{15}{70}} \] \[ = \frac{\frac{6}{70}}{\frac{15}{70} + \frac{30}{70} + \frac{30}{70} + \frac{15}{70}} \] \[ = \frac{\frac{6}{70}}{\frac{90}{70}} = \frac{6}{90} = \frac{2}{7}. \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)