Let us denote 4W4B as the case where the bag contains 4 white and 4 black balls. The probability of drawing 2 white and 2 black balls from such a bag is given by:
\[ P(4W4B / 2W2B) = \frac{P(4W4B) \times P(2W2B / 4W4B)}{P(4W4B) \times P(2W2B / 4W4B) + P(3W5B) \times P(2W2B / 3W5B) + \dots + P(0W8B) \times P(2W2B / 0W8B)} \] \[ = \frac{\frac{1}{5} \times \binom{4}{2} \times \binom{4}{2} / \binom{8}{4}}{\frac{1}{5} \times \binom{2}{2} \times \binom{6}{2} / \binom{8}{4} + \frac{1}{5} \times \binom{3}{2} \times \binom{5}{2} / \binom{8}{4} + \dots + \frac{1}{5} \times \binom{6}{2} \times \binom{2}{2} / \binom{8}{4}} \] \[ = \frac{\frac{1}{5} \times \frac{4C_2 \times 4C_2}{8C_4}}{\frac{1}{5} \times \frac{2C_2 \times 6C_2}{8C_4} + \frac{1}{5} \times \frac{3C_2 \times 5C_2}{8C_4} + \dots + \frac{1}{5} \times \frac{6C_2 \times 2C_2}{8C_4}} \] \[ = \frac{\frac{1}{5} \times \frac{6 \times 6}{70}}{\frac{1}{5} \times \frac{15}{70} + \frac{1}{5} \times \frac{30}{70} + \dots + \frac{1}{5} \times \frac{15}{70}} \] \[ = \frac{\frac{1}{5} \times \frac{6 \times 6}{70}}{\frac{1}{5} \times \frac{15}{70} + \frac{1}{5} \times \frac{30}{70} + \dots + \frac{1}{5} \times \frac{15}{70}} \] \[ = \frac{\frac{6}{70}}{\frac{15}{70} + \frac{30}{70} + \frac{30}{70} + \frac{15}{70}} \] \[ = \frac{\frac{6}{70}}{\frac{90}{70}} = \frac{6}{90} = \frac{2}{7}. \] 
Find the probability that the bag contains an equal number of white and black balls, given that 4 balls drawn at random without replacement consist of 2 white and 2 black balls.
We apply Bayes' theorem. Let \( W \) be the number of white balls in the bag. The bag has 8 balls, so possible values for \( W \) are 0,1,2,...,8. However, since we drew 2 white and 2 black balls, \( W \) must be at least 2 and at most 6. We assume all compositions of colors are equally likely a priori.
Step 1: Define events:
We want \( P(A|E) \).
Step 2: Apply Bayes' theorem:
\[ P(A|E) = \frac{P(E|A) \cdot P(A)}{P(E)} \]Assuming uniform prior over possible \( W \), \( P(A) = \frac{1}{9} \) (since \( W \) can be 0,...,8). But given we drew 2 white and 2 black, possible \( W \) values are 2,3,4,5,6. So prior over these 5 possibilities is uniform: \( P(W = w) = \frac{1}{5} \) for \( w = 2,3,4,5,6 \).
Step 3: Compute \( P(E|W = w) \):
Given \( W = w \), number of black balls = \( 8 - w \).
\[ P(E|W = w) = \frac{\binom{w}{2} \binom{8-w}{2}}{\binom{8}{4}} \]Step 4: Compute \( P(E) \) using law of total probability:
\[ P(E) = \sum_{w=2}^{6} P(E|W=w) \cdot P(W=w) = \frac{1}{5} \cdot \frac{1}{\binom{8}{4}} \sum_{w=2}^{6} \binom{w}{2} \binom{8-w}{2} \]Calculate the sum:
Sum = \( 15 + 30 + 36 + 30 + 15 = 126 \).
Also, \( \binom{8}{4} = 70 \).
\[ P(E) = \frac{1}{5} \cdot \frac{126}{70} = \frac{126}{350} = \frac{63}{175} = \frac{9}{25} \]Step 5: Compute \( P(E|A) \):
For \( W = 4 \):
\[ P(E|A) = \frac{\binom{4}{2} \binom{4}{2}}{\binom{8}{4}} = \frac{6 \times 6}{70} = \frac{36}{70} = \frac{18}{35} \]Step 6: Apply Bayes' theorem:
\[ P(A|E) = \frac{P(E|A) \cdot P(A)}{P(E)} = \frac{\frac{18}{35} \cdot \frac{1}{5}}{\frac{9}{25}} = \frac{18}{35 \cdot 5} \cdot \frac{25}{9} = \frac{18 \cdot 25}{35 \cdot 5 \cdot 9} \]Simplify:
\[ = \frac{450}{1575} = \frac{450 \div 225}{1575 \div 225} = \frac{2}{7} \]Therefore, the required probability is \( \frac{2}{7} \).
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
