The domain of \(y= cos^{-1}|\frac{2-|x|}{4}| log(3 - x)^{-1}\) is [α, β) - {y} then the value of α+β-y =?
Let \[ R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \text{ be a non-zero } 3 \times 3 \text{ matrix, where} \]
\[ x = \sin \theta, \quad y = \sin \left( \theta + \frac{2\pi}{3} \right), \quad z = \sin \left( \theta + \frac{4\pi}{3} \right) \]
and \( \theta \neq 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi \). For a square matrix \( M \), let \( \text{trace}(M) \) denote the sum of all the diagonal entries of \( M \). Then, among the statements:
Which of the following is true?
If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is: