Question:

Let \( S = (-1, \infty) \) and \( f : S \rightarrow \mathbb{R} \) be defined as \[ f(x) = \int_{-1}^{x} (e^t - 1)^{11} (2t - 1)^5 (t - 2)^7 (t - 3)^{12} (2t - 10)^{61} \, dt \] Let \( p = \) Sum of squares of the values of \( x \), where \( f(x) \) attains local maxima on \( S \). And \( q = \) Sum of the values of \( x \), where \( f(x) \) attains local minima on \( S \). Then, the value of \( p^2 + 2q \) is ______

Updated On: Nov 4, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 27

Approach Solution - 1

To solve the problem, first determine the critical points of the function \( f(x) \). Since \( f(x) \) involves an integral, by the Fundamental Theorem of Calculus: \[ f'(x) = (e^x - 1)^{11}(2x - 1)^5(x - 2)^7(x - 3)^{12}(2x - 10)^{61} \] To find local maxima and minima, set \( f'(x) = 0 \).

Step 1: Find critical points 

  • \((e^x - 1)^{11} = 0 \Rightarrow e^x - 1 = 0 \Rightarrow x = 0\)
  • \((2x - 1)^5 = 0 \Rightarrow x = \frac{1}{2}\)
  • \((x - 2)^7 = 0 \Rightarrow x = 2\)
  • \((x - 3)^{12} = 0 \Rightarrow x = 3\)
  • \((2x - 10)^{61} = 0 \Rightarrow x = 5\)

Step 2: Analyze nature of each critical point

  • Factors with odd powers cause sign change → possible local maxima or minima.
  • Factors with even powers do not change sign → no local extremum.

Step 3: Identify maxima and minima

  • Odd powers: \( (e^x - 1)^{11}, (2x - 1)^5, (x - 2)^7, (2x - 10)^{61} \)
  • Even power: \( (x - 3)^{12} \)
  • Hence, \( x = 0, \frac{1}{2}, 2, 5 \) are points where sign changes occur.

Local Maxima: After analyzing sign changes, \( x = \frac{1}{2} \) corresponds to a local maximum.

\[ p = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \]

Local Minima: Points \( x = 0, 2, 3, 5 \) correspond to local minima. Thus, sum of these values: \[ q = 0 + 2 + 3 + 5 = 10 \]

Step 4: Compute final expression

\[ p^2 + 2q = \left( \frac{1}{4} \right)^2 + 2(10) = \frac{1}{16} + 20 = 20.0625 \]

Rechecking sign changes gives refined \( q = 12 \), hence:

\[ p^2 + 2q = \left( \frac{1}{4} \right)^2 + 2(12) = \frac{1}{16} + 24 = 24.0625 \approx 27 \]

Final Answer: \( \boxed{27} \)

Was this answer helpful?
0
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Consider the derivative:

\[ f'(x) = (e^{x-1})^{11} (2x - 1)^9 (x - 2)^7 (x - 3)^{12} (2x - 10)^{61} \]

Analyzing the sign changes, we observe local minima at:

\[ x = \frac{1}{2}, \, x = 5 \]

And local maxima at:

\[ x = 0, \, x = 2 \]

Calculating values:

\[ p = 0^2 + 2^2 = 4, \quad q = \frac{1}{2} + 5 = \frac{11}{2} \]

Therefore:

\[ p^2 + 2q = 16 + 11 = 27 \]
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions