Consider the derivative:
\[ f'(x) = (e^{x-1})^{11} (2x - 1)^9 (x - 2)^7 (x - 3)^{12} (2x - 10)^{61} \]Analyzing the sign changes, we observe local minima at:
\[ x = \frac{1}{2}, \, x = 5 \]And local maxima at:
\[ x = 0, \, x = 2 \]Calculating values:
\[ p = 0^2 + 2^2 = 4, \quad q = \frac{1}{2} + 5 = \frac{11}{2} \]Therefore:
\[ p^2 + 2q = 16 + 11 = 27 \]The integral \(\int e^x \sqrt{e^x} \, dx\) equals: