Consider the derivative:
\[ f'(x) = (e^{x-1})^{11} (2x - 1)^9 (x - 2)^7 (x - 3)^{12} (2x - 10)^{61} \]Analyzing the sign changes, we observe local minima at:
\[ x = \frac{1}{2}, \, x = 5 \]And local maxima at:
\[ x = 0, \, x = 2 \]Calculating values:
\[ p = 0^2 + 2^2 = 4, \quad q = \frac{1}{2} + 5 = \frac{11}{2} \]Therefore:
\[ p^2 + 2q = 16 + 11 = 27 \]Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: