Consider 3 bad apples and 15 good apples. Let \( X \) be the number of bad apples drawn. The probabilities are:
\[ P(X = 0) = \frac{\binom{15}{2}}{\binom{18}{2}} = \frac{105}{153} \] \[ P(X = 1) = \frac{\binom{3}{1} \cdot \binom{15}{1}}{\binom{18}{2}} = \frac{45}{153} \] \[ P(X = 2) = \frac{\binom{3}{2}}{\binom{18}{2}} = \frac{3}{153} \]Calculate the expected value \( E(X) \):
\[ E(X) = 0 \times \frac{105}{153} + 1 \times \frac{45}{153} + 2 \times \frac{3}{153} = \frac{51}{153} = \frac{1}{3} \]Compute the variance:
\[ \text{Var}(X) = E(X^2) - (E(X))^2 \] \[ E(X^2) = 0^2 \times \frac{105}{153} + 1^2 \times \frac{45}{153} + 2^2 \times \frac{3}{153} = \frac{57}{153} \] \[ \text{Var}(X) = \frac{57}{153} - \left( \frac{1}{3} \right)^2 = \frac{57}{153} - \frac{1}{9} = \frac{40}{153} \]Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.