To solve the problem of finding the variance of the random variable \(x\), which represents the number of rotten apples in a draw of two apples from a mixture of rotten and good apples, we need to proceed with the following steps:
Step 1: Determine probabilities.
Step 2: Establish the probability distribution of \(x\).
Step 3: Calculate the expected value \(E(x)\).
Step 4: Calculate the expected value of \(x^2\), \(E(x^2)\).
Step 5: Calculate the variance \(Var(x)\).
Thus, the variance of \(x\) is \( \frac{40}{153} \), matching the given correct answer.
Consider 3 bad apples and 15 good apples. Let \( X \) be the number of bad apples drawn. The probabilities are:
\[ P(X = 0) = \frac{\binom{15}{2}}{\binom{18}{2}} = \frac{105}{153} \] \[ P(X = 1) = \frac{\binom{3}{1} \cdot \binom{15}{1}}{\binom{18}{2}} = \frac{45}{153} \] \[ P(X = 2) = \frac{\binom{3}{2}}{\binom{18}{2}} = \frac{3}{153} \]Calculate the expected value \( E(X) \):
\[ E(X) = 0 \times \frac{105}{153} + 1 \times \frac{45}{153} + 2 \times \frac{3}{153} = \frac{51}{153} = \frac{1}{3} \]Compute the variance:
\[ \text{Var}(X) = E(X^2) - (E(X))^2 \] \[ E(X^2) = 0^2 \times \frac{105}{153} + 1^2 \times \frac{45}{153} + 2^2 \times \frac{3}{153} = \frac{57}{153} \] \[ \text{Var}(X) = \frac{57}{153} - \left( \frac{1}{3} \right)^2 = \frac{57}{153} - \frac{1}{9} = \frac{40}{153} \]Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.