Consider 3 bad apples and 15 good apples. Let \( X \) be the number of bad apples drawn. The probabilities are:
\[ P(X = 0) = \frac{\binom{15}{2}}{\binom{18}{2}} = \frac{105}{153} \] \[ P(X = 1) = \frac{\binom{3}{1} \cdot \binom{15}{1}}{\binom{18}{2}} = \frac{45}{153} \] \[ P(X = 2) = \frac{\binom{3}{2}}{\binom{18}{2}} = \frac{3}{153} \]Calculate the expected value \( E(X) \):
\[ E(X) = 0 \times \frac{105}{153} + 1 \times \frac{45}{153} + 2 \times \frac{3}{153} = \frac{51}{153} = \frac{1}{3} \]Compute the variance:
\[ \text{Var}(X) = E(X^2) - (E(X))^2 \] \[ E(X^2) = 0^2 \times \frac{105}{153} + 1^2 \times \frac{45}{153} + 2^2 \times \frac{3}{153} = \frac{57}{153} \] \[ \text{Var}(X) = \frac{57}{153} - \left( \frac{1}{3} \right)^2 = \frac{57}{153} - \frac{1}{9} = \frac{40}{153} \]Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]