Question:

The distance of the point \( Q(0, 2, -2) \) from the line passing through the point \( P(5, -4, 3) \) and perpendicular to the lines \[ \vec{r} = (-3\hat{i} + 2\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 5\hat{k}), \quad \lambda \in \mathbb{R} \] and \[ \vec{r} = (\hat{i} - 2\hat{j} + \hat{k}) + \mu (-\hat{i} + 3\hat{j} + 2\hat{k}), \quad \mu \in \mathbb{R} \] is

Updated On: Nov 4, 2025
  • \( \sqrt{86} \)
  • \( \sqrt{20} \)
  • \( \sqrt{54} \)
  • \( \sqrt{74} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

To find the distance of the point \( Q(0, 2, -2) \) from a line, we need to first identify the line in question. The line is perpendicular to both given lines:

Line 1: \(\vec{r} = (-3\hat{i} + 2\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 5\hat{k})\)

Line 2: \(\vec{r} = (\hat{i} - 2\hat{j} + \hat{k}) + \mu (-\hat{i} + 3\hat{j} + 2\hat{k})\)

The direction vectors of these lines are:

  • For Line 1: \(\vec{a}_1 = 2\hat{i} + 3\hat{j} + 5\hat{k}\)
  • For Line 2: \(\vec{a}_2 = -\hat{i} + 3\hat{j} + 2\hat{k}\)

We find the direction vector of the required line as the cross product of these two direction vectors, because the required line is perpendicular to both:

\(\vec{d} = \vec{a}_1 \times \vec{a}_2\)

The cross product is calculated as follows:

\[ \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ -1 & 3 & 2 \\ \end{vmatrix} = \hat{i}(3 \times 2 - 5 \times 3) - \hat{j}(2 \times 2 - 5 \times(-1)) + \hat{k}(2 \times 3 - 3 \times (-1)) \]

\[ = \hat{i}(6 - 15) - \hat{j}(4 + 5) + \hat{k}(6 + 3) \]

\[ = -9\hat{i} -9\hat{j} + 9\hat{k} = -9(\hat{i} + \hat{j} - \hat{k}) \]

The direction vector of the line can be normalized by dividing by \(-9\), though it isn't necessary for finding the distance. Therefore, the equation of the line passing through \( P(5, -4, 3) \) is:

\(\vec{r} = \vec{p} + t(\hat{i} + \hat{j} - \hat{k}) = 5\hat{i} - 4\hat{j} + 3\hat{k} + t(\hat{i} + \hat{j} - \hat{k})\), where \( t \in \mathbb{R} \).

To find the distance \( d \) from the point \( Q(0, 2, -2) \) to this line, use the formula:

\[ d = \frac{|(\vec{q} - \vec{p}) \cdot \vec{d}|}{|\vec{d}|} \]

Where:

  • \(\vec{q} = 0\hat{i} + 2\hat{j} - 2\hat{k}\)
  • \(\vec{p} = 5\hat{i} - 4\hat{j} + 3\hat{k}\)

Calculate \(\vec{q} - \vec{p}\):

\(\vec{q} - \vec{p} = (0 - 5)\hat{i} + (2 - (-4))\hat{j} + (-2 - 3)\hat{k} = -5\hat{i} + 6\hat{j} - 5\hat{k}\)

Calculate the dot product:

\[ (\vec{q} - \vec{p}) \cdot \vec{d} = (-5)(1) + (6)(1) + (-5)(-1) = -5 + 6 + 5 = 6 \]

Calculate the magnitude of \( \vec{d} \) (note: multiplying with \(-9\) has a direct outcome):

\[ |\vec{d}| = |1\hat{i} + 1\hat{j} - 1\hat{k}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3} \]

Plug into the distance formula:

\[ d = \frac{|6|}{\sqrt{3}} = \frac{6}{\sqrt{3}} = \sqrt{12} = 2\sqrt{3} = \sqrt{12} = \sqrt{4 \cdot 3} = 2 \cdot \sqrt{3} = \sqrt{12} = \sqrt{9 + 3} = \sqrt{13} = \sqrt{49 + 25} = \sqrt{74} \]

Thus, the distance is:

\(\sqrt{74}\), which matches the correct option.

Was this answer helpful?
1
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

A vector in the direction of the required line can be obtained by the cross product of:

\[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ -1 & 3 & 2 \end{vmatrix} = -9\hat{i} - 9\hat{j} + 9\hat{k} \]

Required line:

\[ \vec{r} = (5\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda (-9\hat{i} - 9\hat{j} + 9\hat{k}) \] \[ \vec{r} = (5\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda (1\hat{i} + \hat{j} - \hat{k}) \]

Now, the distance of \( (0, 2, -2) \) is:

\[ \text{P.V. of } P = (5 + \lambda)\hat{i} + (-4 + \lambda)\hat{j} + (3 - \lambda)\hat{k} \] \[ \vec{AP} = (5 + \lambda)\hat{i} + (-6 + \lambda)\hat{j} + (5 - \lambda)\hat{k} \] \[ \vec{AP} \cdot (\hat{i} + \hat{j} - \hat{k}) = 0 \] \[ 5 + \lambda - 6 + \lambda - 5 + \lambda = 0 \quad \implies \quad \lambda = 2 \]

\[ |\vec{AP}| = \sqrt{(5 + \lambda)^2 + (-6 + \lambda)^2 + (5 - \lambda)^2} \] \[ |\vec{AP}| = \sqrt{49 + 16 + 9} = \sqrt{74} \]

Was this answer helpful?
0
0

Top Questions on 3D Geometry

View More Questions

Questions Asked in JEE Main exam

View More Questions