A vector in the direction of the required line can be obtained by the cross product of:
\[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ -1 & 3 & 2 \end{vmatrix} = -9\hat{i} - 9\hat{j} + 9\hat{k} \]
Required line:
\[ \vec{r} = (5\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda (-9\hat{i} - 9\hat{j} + 9\hat{k}) \] \[ \vec{r} = (5\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda (1\hat{i} + \hat{j} - \hat{k}) \]
Now, the distance of \( (0, 2, -2) \) is:
\[ \text{P.V. of } P = (5 + \lambda)\hat{i} + (-4 + \lambda)\hat{j} + (3 - \lambda)\hat{k} \] \[ \vec{AP} = (5 + \lambda)\hat{i} + (-6 + \lambda)\hat{j} + (5 - \lambda)\hat{k} \] \[ \vec{AP} \cdot (\hat{i} + \hat{j} - \hat{k}) = 0 \] \[ 5 + \lambda - 6 + \lambda - 5 + \lambda = 0 \quad \implies \quad \lambda = 2 \]
\[ |\vec{AP}| = \sqrt{(5 + \lambda)^2 + (-6 + \lambda)^2 + (5 - \lambda)^2} \] \[ |\vec{AP}| = \sqrt{49 + 16 + 9} = \sqrt{74} \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).