To find the distance of the point \( Q(0, 2, -2) \) from a line, we need to first identify the line in question. The line is perpendicular to both given lines:
Line 1: \(\vec{r} = (-3\hat{i} + 2\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 5\hat{k})\)
Line 2: \(\vec{r} = (\hat{i} - 2\hat{j} + \hat{k}) + \mu (-\hat{i} + 3\hat{j} + 2\hat{k})\)
The direction vectors of these lines are:
We find the direction vector of the required line as the cross product of these two direction vectors, because the required line is perpendicular to both:
\(\vec{d} = \vec{a}_1 \times \vec{a}_2\)
The cross product is calculated as follows:
\[ \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ -1 & 3 & 2 \\ \end{vmatrix} = \hat{i}(3 \times 2 - 5 \times 3) - \hat{j}(2 \times 2 - 5 \times(-1)) + \hat{k}(2 \times 3 - 3 \times (-1)) \]
\[ = \hat{i}(6 - 15) - \hat{j}(4 + 5) + \hat{k}(6 + 3) \]
\[ = -9\hat{i} -9\hat{j} + 9\hat{k} = -9(\hat{i} + \hat{j} - \hat{k}) \]
The direction vector of the line can be normalized by dividing by \(-9\), though it isn't necessary for finding the distance. Therefore, the equation of the line passing through \( P(5, -4, 3) \) is:
\(\vec{r} = \vec{p} + t(\hat{i} + \hat{j} - \hat{k}) = 5\hat{i} - 4\hat{j} + 3\hat{k} + t(\hat{i} + \hat{j} - \hat{k})\), where \( t \in \mathbb{R} \).
To find the distance \( d \) from the point \( Q(0, 2, -2) \) to this line, use the formula:
\[ d = \frac{|(\vec{q} - \vec{p}) \cdot \vec{d}|}{|\vec{d}|} \]
Where:
Calculate \(\vec{q} - \vec{p}\):
\(\vec{q} - \vec{p} = (0 - 5)\hat{i} + (2 - (-4))\hat{j} + (-2 - 3)\hat{k} = -5\hat{i} + 6\hat{j} - 5\hat{k}\)
Calculate the dot product:
\[ (\vec{q} - \vec{p}) \cdot \vec{d} = (-5)(1) + (6)(1) + (-5)(-1) = -5 + 6 + 5 = 6 \]
Calculate the magnitude of \( \vec{d} \) (note: multiplying with \(-9\) has a direct outcome):
\[ |\vec{d}| = |1\hat{i} + 1\hat{j} - 1\hat{k}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3} \]
Plug into the distance formula:
\[ d = \frac{|6|}{\sqrt{3}} = \frac{6}{\sqrt{3}} = \sqrt{12} = 2\sqrt{3} = \sqrt{12} = \sqrt{4 \cdot 3} = 2 \cdot \sqrt{3} = \sqrt{12} = \sqrt{9 + 3} = \sqrt{13} = \sqrt{49 + 25} = \sqrt{74} \]
Thus, the distance is:
\(\sqrt{74}\), which matches the correct option.
A vector in the direction of the required line can be obtained by the cross product of:
\[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ -1 & 3 & 2 \end{vmatrix} = -9\hat{i} - 9\hat{j} + 9\hat{k} \]
Required line:
\[ \vec{r} = (5\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda (-9\hat{i} - 9\hat{j} + 9\hat{k}) \] \[ \vec{r} = (5\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda (1\hat{i} + \hat{j} - \hat{k}) \]
Now, the distance of \( (0, 2, -2) \) is:
\[ \text{P.V. of } P = (5 + \lambda)\hat{i} + (-4 + \lambda)\hat{j} + (3 - \lambda)\hat{k} \] \[ \vec{AP} = (5 + \lambda)\hat{i} + (-6 + \lambda)\hat{j} + (5 - \lambda)\hat{k} \] \[ \vec{AP} \cdot (\hat{i} + \hat{j} - \hat{k}) = 0 \] \[ 5 + \lambda - 6 + \lambda - 5 + \lambda = 0 \quad \implies \quad \lambda = 2 \]
\[ |\vec{AP}| = \sqrt{(5 + \lambda)^2 + (-6 + \lambda)^2 + (5 - \lambda)^2} \] \[ |\vec{AP}| = \sqrt{49 + 16 + 9} = \sqrt{74} \]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 