therefore
\[ \begin{vmatrix} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{vmatrix} \] \[ = 24 - 6 = 18 \]therefore \( 2f(0) + f'(0) = 42 \)
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: