To solve the given problem, we need to evaluate the function \(f(x)\), which is defined as the determinant of a 3x3 matrix, and then find the expression \(2f(0) + f'(0)\).
Given matrix:
| \(x^3\) | \(2x^2 + 1\) | \(1 + 3x\) |
| \(3x^2 + 2\) | \(2x\) | \(x^3 + 6\) |
| \(x^3 - x\) | \(4\) | \(x^2 - 2\) |
Step 1: Calculate \(f(0)\)
Substitute \(x = 0\) into the matrix to compute \(f(0)\):
Find the determinant of this matrix:
\(\begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} = 0(0(-2) - 6(4)) - 1(2(-2) - 6 \cdot 0) + 1(2 \cdot 4 - 0 \cdot 0)\)
This simplifies to:
\(0 - (-4) + 8 = 4 + 8 = 12\)
Thus, \(f(0) = 12\).
Step 2: Calculate \(f'(x)\) and \(f'(0)\)
Differentiate the determinant function \(f(x)\) with respect to \(x\). The function is complicated, and we will use the cofactor expansion along the first row to find the derivative.
The determinant using the first row expansion can be written as:
\(f(x) = x^3 \cdot \begin{vmatrix} 2x & x^3 + 6 \\ 4 & x^2 - 2 \end{vmatrix} - (2x^2 + 1) \cdot \begin{vmatrix} 3x^2 + 2 & x^3 + 6 \\ x^3 - x & x^2 - 2 \end{vmatrix} + (1 + 3x) \cdot \begin{vmatrix} 3x^2 + 2 & 2x \\ x^3 - x & 4 \end{vmatrix}\)
Only the variables concerning \(x\) need to be considered in this step.
Now, evaluate \(f'(0)\) using standard differentiation techniques, which involves complex and lengthy calculations of partial derivatives pertaining to each component of the expanded determinants.
Finally substituting, we find that:
\(f'(0) = 18\)
Step 3: Calculate \(2f(0) + f'(0)\)
Substitute the values \(f(0) = 12\) and \(f'(0) = 18\):
\(2f(0) + f'(0) = 2 \cdot 12 + 18 = 24 + 18 = 42\)
Thus, the answer is \(42\).
therefore
\[ \begin{vmatrix} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{vmatrix} \] \[ = 24 - 6 = 18 \]therefore \( 2f(0) + f'(0) = 42 \)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.