To solve the given problem, we need to evaluate the function \(f(x)\), which is defined as the determinant of a 3x3 matrix, and then find the expression \(2f(0) + f'(0)\).
Given matrix:
| \(x^3\) | \(2x^2 + 1\) | \(1 + 3x\) |
| \(3x^2 + 2\) | \(2x\) | \(x^3 + 6\) |
| \(x^3 - x\) | \(4\) | \(x^2 - 2\) |
Step 1: Calculate \(f(0)\)
Substitute \(x = 0\) into the matrix to compute \(f(0)\):
Find the determinant of this matrix:
\(\begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} = 0(0(-2) - 6(4)) - 1(2(-2) - 6 \cdot 0) + 1(2 \cdot 4 - 0 \cdot 0)\)
This simplifies to:
\(0 - (-4) + 8 = 4 + 8 = 12\)
Thus, \(f(0) = 12\).
Step 2: Calculate \(f'(x)\) and \(f'(0)\)
Differentiate the determinant function \(f(x)\) with respect to \(x\). The function is complicated, and we will use the cofactor expansion along the first row to find the derivative.
The determinant using the first row expansion can be written as:
\(f(x) = x^3 \cdot \begin{vmatrix} 2x & x^3 + 6 \\ 4 & x^2 - 2 \end{vmatrix} - (2x^2 + 1) \cdot \begin{vmatrix} 3x^2 + 2 & x^3 + 6 \\ x^3 - x & x^2 - 2 \end{vmatrix} + (1 + 3x) \cdot \begin{vmatrix} 3x^2 + 2 & 2x \\ x^3 - x & 4 \end{vmatrix}\)
Only the variables concerning \(x\) need to be considered in this step.
Now, evaluate \(f'(0)\) using standard differentiation techniques, which involves complex and lengthy calculations of partial derivatives pertaining to each component of the expanded determinants.
Finally substituting, we find that:
\(f'(0) = 18\)
Step 3: Calculate \(2f(0) + f'(0)\)
Substitute the values \(f(0) = 12\) and \(f'(0) = 18\):
\(2f(0) + f'(0) = 2 \cdot 12 + 18 = 24 + 18 = 42\)
Thus, the answer is \(42\).
therefore
\[ \begin{vmatrix} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{vmatrix} \] \[ = 24 - 6 = 18 \]therefore \( 2f(0) + f'(0) = 42 \)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?
