therefore
\[ \begin{vmatrix} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{vmatrix} \] \[ = 24 - 6 = 18 \]therefore \( 2f(0) + f'(0) = 42 \)
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)