\[ \frac{dy}{dx} - 2 \cos(2x) \cdot y = \sec^2 x \] \[ \frac{dy}{dx} + p \cdot y = Q \]
Integrating Factor (IF):
\[ IF = e^{\int p \, dx} = e^{-2 \int \csc(2x) \, dx} \]
Let \( 2x = t \):
\[ 2dx = dt \implies dx = \frac{dt}{2} \]
Calculating the Integrating Factor:
\[ e^{\int \csc(2x) dx} = e^{-\int \tan t \, dt} = e^{-\ln |\tan x|} = \frac{1}{|\tan x|} \]
So, the solution becomes:
\[ y(IF) = \int Q \cdot (IF) \, dx + c \] \[ y = \frac{1}{|\tan x|} \int \sec^2 x \cdot \frac{1}{|\tan x|} \, dx + c \] \[ y = \frac{1}{|\tan x|} \int \frac{dt}{|t|} + c \quad \text{(for \( \tan x = t \))} \] \[ y = \frac{1}{|\tan x|} \ln |t| + c \] \[ y = |\tan x| \left( \ln |\tan x| + c \right) \]
Setting specific values:
Put \( x = \frac{\pi}{4} \), \( y = 2 \):
\[ 2 = \ln 1 + c \implies c = 2 \] \[ y = |\tan x| \left( \ln |\tan x| + 2 \right) \] \[ y\left(\frac{\pi}{3}\right) = \sqrt{3} \left( \ln \sqrt{3} + 2 \right) \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: