To solve the differential equation given by:
\(\frac{dy}{dx} = \frac{(\tan x) + y}{\sin x (\sec x - \sin x \tan x)}\)
with the initial condition \( y \left( \frac{\pi}{4} \right) = 2 \), we need to determine \( y \left( \frac{\pi}{3} \right) \).
Step 1: Simplify the Differential Equation
The differential equation is
\(\frac{dy}{dx} = \frac{\tan x + y}{\sin x (\sec x - \sin x \tan x)}\)
First, simplify the denominator:
\(\sec x - \sin x \tan x = \frac{1}{\cos x} - \sin x \cdot \frac{\sin x}{\cos x} = \frac{1 - \sin^2 x}{\cos x} = \frac{\cos^2 x}{\cos x} = \cos x\)
Thus, the differential equation simplifies to:
\(\frac{dy}{dx} = \frac{\tan x + y}{\sin x \cos x}\)
Step 2: Separate Variables
Rewrite this as:
\((\tan x + y) dx = \sin x \cos x \, dy\)
Separate variables:
\((\tan x + y) dx = \sin x \cos x \, dy\)
Step 3: Integrate Both Sides
Integrate both sides:
\(\int \frac{1}{\sin x \cos x} \, dx = \int \frac{1}{\tan x + y} \, dy\)
The integration yields:
\(\log |\sin x| = \log |\tan x + y| + C\)
where \( C \) is the constant of integration.
Step 4: Apply Initial Condition
Using the initial condition \( y \left( \frac{\pi}{4} \right) = 2 \):
\(\log |\sin(\frac{\pi}{4})| = \log |1 + 2| + C\)
\(\log \left(\frac{\sqrt{2}}{2}\right) = \log 3 + C\)
Thus,
\(C = \log \left(\frac{\sqrt{2}}{6}\right)\)
Step 5: Solve for \( y \left( \frac{\pi}{3} \right) \)
Substituting back, resolve for \( y \left( \frac{\pi}{3} \right) \):
\(\log |\sin(\frac{\pi}{3})| = \log |1 + y(\frac{\pi}{3})| + \log \left(\frac{\sqrt{2}}{6}\right)\)
Since \( \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \), simplify to find
\(y(\frac{\pi}{3}) = \sqrt{3} \left(2 + \log_e \sqrt{3} \right)\)
By comparing with the options provided, the correct solution is:
\(\sqrt{3} \left( 2 + \log_e \sqrt{3} \right)\)
\[ \frac{dy}{dx} - 2 \cos(2x) \cdot y = \sec^2 x \] \[ \frac{dy}{dx} + p \cdot y = Q \]
Integrating Factor (IF):
\[ IF = e^{\int p \, dx} = e^{-2 \int \csc(2x) \, dx} \]
Let \( 2x = t \):
\[ 2dx = dt \implies dx = \frac{dt}{2} \]
Calculating the Integrating Factor:
\[ e^{\int \csc(2x) dx} = e^{-\int \tan t \, dt} = e^{-\ln |\tan x|} = \frac{1}{|\tan x|} \]
So, the solution becomes:
\[ y(IF) = \int Q \cdot (IF) \, dx + c \] \[ y = \frac{1}{|\tan x|} \int \sec^2 x \cdot \frac{1}{|\tan x|} \, dx + c \] \[ y = \frac{1}{|\tan x|} \int \frac{dt}{|t|} + c \quad \text{(for \( \tan x = t \))} \] \[ y = \frac{1}{|\tan x|} \ln |t| + c \] \[ y = |\tan x| \left( \ln |\tan x| + c \right) \]
Setting specific values:
Put \( x = \frac{\pi}{4} \), \( y = 2 \):
\[ 2 = \ln 1 + c \implies c = 2 \] \[ y = |\tan x| \left( \ln |\tan x| + 2 \right) \] \[ y\left(\frac{\pi}{3}\right) = \sqrt{3} \left( \ln \sqrt{3} + 2 \right) \]
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.
Designate whether each of the following compounds is aromatic or not aromatic.
