We are given the two circles:
\[ C_1: x^2 + y^2 = 4 \quad \text{and} \quad C_2: x^2 + y^2 - 4x + 9 = 0 \]
To find the points of intersection, subtract the equation of \(C_1\) from the equation of \(C_2\):
\[ (x^2 + y^2 - 4x + 9) - (x^2 + y^2) = 0 - 4 \]
Simplifying:
\[ -4x + 9 = -4 \Rightarrow -4x = -13 \Rightarrow x = \frac{13}{4} \]
Thus, the value of \(x\) is \(\frac{13}{4}\).
Now, substitute \(x = \frac{13}{4}\) into the equation of \(C_1\) to find \(y\):
\[ \left(\frac{13}{4}\right)^2 + y^2 = 4 \]
\[ \frac{169}{16} + y^2 = 4 \]
\[ y^2 = 4 - \frac{169}{16} = \frac{64}{16} - \frac{169}{16} = -\frac{105}{16} \]
This gives \(y = \pm \sqrt{\frac{105}{16}}\), i.e., \(y = \pm \frac{\sqrt{105}}{4}\).
Thus, the points of intersection are \(x = \frac{13}{4}\) and \(y = \pm \frac{\sqrt{105}}{4}\).
Now, substitute the values of \(a\) and \(b\):
\[ a = \frac{13}{4}, \quad b = \frac{\sqrt{105}}{4} \]
We need to find \(8a + 12, 16b - 20\):
\[ 8a + 12 = 8 \times \frac{13}{4} + 12 = 26 + 12 = 38 \]
\[ 16b - 20 = 16 \times \frac{\sqrt{105}}{4} - 20 = 4\sqrt{105} - 20 \]
This point \((38, 4\sqrt{105} - 20)\) lies on the curve:
\[ 6x^2 + y^2 = 42 \]
Substitute \(x = 38\) and \(y = 4\sqrt{105} - 20\) into the equation and verify.
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.