We are given the two circles:
\[ C_1: x^2 + y^2 = 4 \quad \text{and} \quad C_2: x^2 + y^2 - 4x + 9 = 0 \]
To find the points of intersection, subtract the equation of \(C_1\) from the equation of \(C_2\):
\[ (x^2 + y^2 - 4x + 9) - (x^2 + y^2) = 0 - 4 \]
Simplifying:
\[ -4x + 9 = -4 \Rightarrow -4x = -13 \Rightarrow x = \frac{13}{4} \]
Thus, the value of \(x\) is \(\frac{13}{4}\).
Now, substitute \(x = \frac{13}{4}\) into the equation of \(C_1\) to find \(y\):
\[ \left(\frac{13}{4}\right)^2 + y^2 = 4 \]
\[ \frac{169}{16} + y^2 = 4 \]
\[ y^2 = 4 - \frac{169}{16} = \frac{64}{16} - \frac{169}{16} = -\frac{105}{16} \]
This gives \(y = \pm \sqrt{\frac{105}{16}}\), i.e., \(y = \pm \frac{\sqrt{105}}{4}\).
Thus, the points of intersection are \(x = \frac{13}{4}\) and \(y = \pm \frac{\sqrt{105}}{4}\).
Now, substitute the values of \(a\) and \(b\):
\[ a = \frac{13}{4}, \quad b = \frac{\sqrt{105}}{4} \]
We need to find \(8a + 12, 16b - 20\):
\[ 8a + 12 = 8 \times \frac{13}{4} + 12 = 26 + 12 = 38 \]
\[ 16b - 20 = 16 \times \frac{\sqrt{105}}{4} - 20 = 4\sqrt{105} - 20 \]
This point \((38, 4\sqrt{105} - 20)\) lies on the curve:
\[ 6x^2 + y^2 = 42 \]
Substitute \(x = 38\) and \(y = 4\sqrt{105} - 20\) into the equation and verify.
Given two circles \( C: x^2 + y^2 = 4 \) and \( C': x^2 + y^2 - 4\lambda x + 9 = 0 \), the set of all values of \(\lambda\) for which they intersect at two distinct points is \( \mathbb{R} - [a, b] \). We need to find which curve the point \((8a + 12, 16b - 20)\) lies on.
Two circles intersect at two distinct points when the distance between their centers is less than the sum of their radii and greater than the absolute difference of their radii. For circles with equations \(x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0\) and \(x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0\), the condition for intersection at two distinct points is:
\[ |r_1 - r_2| < d < r_1 + r_2 \]
where \(d\) is the distance between centers, and \(r_1, r_2\) are the radii.
Step 1: Identify centers and radii of both circles.
For circle \(C: x^2 + y^2 = 4\):
\[ \text{Center } O = (0, 0), \quad \text{Radius } r = 2 \]
For circle \(C': x^2 + y^2 - 4\lambda x + 9 = 0\):
\[ \text{Center } O' = (2\lambda, 0), \quad \text{Radius } r' = \sqrt{(2\lambda)^2 - 9} = \sqrt{4\lambda^2 - 9} \]
Step 2: Write the distance between centers.
\[ d = \sqrt{(2\lambda - 0)^2 + (0 - 0)^2} = |2\lambda| = 2|\lambda| \]
Step 3: Apply the intersection condition \(|r - r'| < d < r + r'\).
Since both circles intersect at two distinct points:
\[ |2 - \sqrt{4\lambda^2 - 9}| < 2|\lambda| < 2 + \sqrt{4\lambda^2 - 9} \]
Step 4: Analyze the inequalities.
First, \( \sqrt{4\lambda^2 - 9} \) must be real:
\[ 4\lambda^2 - 9 \ge 0 \quad \Rightarrow \quad |\lambda| \ge \frac{3}{2} \]
Also, \(2|\lambda| < 2 + \sqrt{4\lambda^2 - 9}\) is automatically true for \(|\lambda| \ge \frac{3}{2}\) (check: squaring gives \(4\lambda^2 < 4 + 4\lambda^2 - 9 + 4\sqrt{4\lambda^2 - 9} \Rightarrow 9 < 4\sqrt{4\lambda^2 - 9} \Rightarrow \frac{9}{4} < \sqrt{4\lambda^2 - 9} \Rightarrow \lambda^2 > \frac{81}{16} + \frac{9}{4} = \frac{117}{16}\), which is stricter, but let's proceed systematically).
Better approach: The radical must be real: \(|\lambda| \ge \frac{3}{2}\).
The condition for two intersections is equivalent to:
\[ d^2 < (r + r')^2 \quad \text{and} \quad d^2 > (r - r')^2 \]
Compute:
\[ d^2 = 4\lambda^2 \] \[ (r + r')^2 = 4 + 4\lambda^2 - 9 + 4\sqrt{4\lambda^2 - 9} = 4\lambda^2 - 5 + 4\sqrt{4\lambda^2 - 9} \] \[ (r - r')^2 = 4 + 4\lambda^2 - 9 - 4\sqrt{4\lambda^2 - 9} = 4\lambda^2 - 5 - 4\sqrt{4\lambda^2 - 9} \]
Step 5: Apply \(d^2 < (r + r')^2\):
\[ 4\lambda^2 < 4\lambda^2 - 5 + 4\sqrt{4\lambda^2 - 9} \] \[ \Rightarrow 5 < 4\sqrt{4\lambda^2 - 9} \] \[ \Rightarrow \sqrt{4\lambda^2 - 9} > \frac{5}{4} \] \[ \Rightarrow 4\lambda^2 - 9 > \frac{25}{16} \] \[ \Rightarrow 4\lambda^2 > \frac{169}{16} \] \[ \Rightarrow \lambda^2 > \frac{169}{64} \] \[ \Rightarrow |\lambda| > \frac{13}{8} \]
Step 6: Apply \(d^2 > (r - r')^2\):
\[ 4\lambda^2 > 4\lambda^2 - 5 - 4\sqrt{4\lambda^2 - 9} \] \[ \Rightarrow 0 > -5 - 4\sqrt{4\lambda^2 - 9} \] \[ \Rightarrow 4\sqrt{4\lambda^2 - 9} > -5 \]
This is always true since the left side is nonnegative.
Step 7: Also \(r' > 0\) gives \(4\lambda^2 - 9 > 0 \Rightarrow |\lambda| > \frac{3}{2}\).
Combining with Step 5: \(|\lambda| > \frac{13}{8}\) and \(|\lambda| > \frac{3}{2}\). Since \(\frac{13}{8} = 1.625\) and \(\frac{3}{2} = 1.5\), the stricter condition is \(|\lambda| > \frac{13}{8}\).
So the intersection condition is \(|\lambda| > \frac{13}{8}\).
Step 8: Interpret "the set of all \(\lambda\) is \( \mathbb{R} - [a, b]\)".
We have \(|\lambda| > \frac{13}{8} \Rightarrow \lambda < -\frac{13}{8} \) or \( \lambda > \frac{13}{8} \).
So the excluded interval is \([-\frac{13}{8}, \frac{13}{8}]\). Thus \(a = -\frac{13}{8}\), \(b = \frac{13}{8}\).
Step 9: Find the point \((8a + 12, 16b - 20)\).
\[ 8a + 12 = 8\left(-\frac{13}{8}\right) + 12 = -13 + 12 = -1 \] \[ 16b - 20 = 16\left(\frac{13}{8}\right) - 20 = 26 - 20 = 6 \]
So the point is \((-1, 6)\).
Step 10: Check which curve this point lies on.
(1) \(x^2 + 2y^2 - 5x + 6y = 1 + 72 + 5 + 36 = 114 \neq 3\) → No
(2) \(5x^2 - y = 5(1) - 6 = -1 \neq -11\) → No
(3) \(x^2 - 4y^2 = 1 - 144 = -143 \neq 7\) → No
(4) \(6x^2 + y^2 = 6(1) + 36 = 42\) → Yes
Hence, the point lies on the curve \(6x^2 + y^2 = 42\).

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
