Consider:
\[ I = \int_{0}^{\frac{\pi}{2}} 525 \sin 2x \cdot \cos^{\frac{11}{2}} x \left(1 + \cos^{\frac{5}{2}} x \right)^{\frac{1}{2}} dx \]Substitute \(\cos x = t^2\), hence \(\sin x dx = -2t dt\):
\[ I = \int_{1}^{0} 525 \cdot 4t^4 \cdot t^{\frac{11}{2}} \left(1 + t^{\frac{5}{2}}\right)^{\frac{1}{2}} (-2 dt) \]Rearranging:
\[ I = 4 \int_{0}^{1} t^4 \sqrt{1 + t^5} dt \]Substitute \(1 + t^5 = k^2\):
\[ 5t^4 dt = 2k dk \quad \Rightarrow \quad t^4 dt = \frac{2}{5} k dk \]Changing limits and integrating yields:
\[ I = \text{further evaluation leading to} \, \frac{8}{5} \cdot (\text{summation terms}) \]Resulting in:
\[ I = 176\sqrt{2} - 64 \]Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: