Question:

If the integral \[ 525 \int_0^{\frac{\pi}{2}} \sin 2x \cos^{\frac{11}{2}} x \left( 1 + \cos^{\frac{5}{2}} x \right)^{\frac{1}{2}} \, dx \] is equal to \[ \left( n \sqrt{2} - 64 \right), \] then \( n \) is equal to ______

Updated On: Mar 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 176

Solution and Explanation

Consider:

\[ I = \int_{0}^{\frac{\pi}{2}} 525 \sin 2x \cdot \cos^{\frac{11}{2}} x \left(1 + \cos^{\frac{5}{2}} x \right)^{\frac{1}{2}} dx \]

Substitute \(\cos x = t^2\), hence \(\sin x dx = -2t dt\):

\[ I = \int_{1}^{0} 525 \cdot 4t^4 \cdot t^{\frac{11}{2}} \left(1 + t^{\frac{5}{2}}\right)^{\frac{1}{2}} (-2 dt) \]

Rearranging:

\[ I = 4 \int_{0}^{1} t^4 \sqrt{1 + t^5} dt \]

Substitute \(1 + t^5 = k^2\):

\[ 5t^4 dt = 2k dk \quad \Rightarrow \quad t^4 dt = \frac{2}{5} k dk \]

Changing limits and integrating yields:

\[ I = \text{further evaluation leading to} \, \frac{8}{5} \cdot (\text{summation terms}) \]

Resulting in:

\[ I = 176\sqrt{2} - 64 \]
Was this answer helpful?
0
0