Let $\sin^{-1} \alpha = A$, $\sin^{-1} \beta = B$, $\sin^{-1} \gamma = C$
$A + B + C = \pi$
$(\alpha + \beta)^2 - \gamma^2 = 3 \alpha \beta$
$\alpha^2 + \beta^2 - \gamma^2 = \alpha \beta$
$\frac{\alpha^2 + \beta^2 - \gamma^2}{2 \alpha \beta} = \frac{1}{2}$
$\Rightarrow \cos C = \frac{1}{2}$
$\sin C = \gamma$
$\cos C = \sqrt{1 - \gamma^2} = \frac{1}{2}$
$\gamma = \frac{\sqrt{3}}{2}$
The given graph illustrates:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).