Let $\sin^{-1} \alpha = A$, $\sin^{-1} \beta = B$, $\sin^{-1} \gamma = C$
$A + B + C = \pi$
$(\alpha + \beta)^2 - \gamma^2 = 3 \alpha \beta$
$\alpha^2 + \beta^2 - \gamma^2 = \alpha \beta$
$\frac{\alpha^2 + \beta^2 - \gamma^2}{2 \alpha \beta} = \frac{1}{2}$
$\Rightarrow \cos C = \frac{1}{2}$
$\sin C = \gamma$
$\cos C = \sqrt{1 - \gamma^2} = \frac{1}{2}$
$\gamma = \frac{\sqrt{3}}{2}$
The given graph illustrates:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: