To solve this problem, we need to determine some properties of both the given ellipse and the hyperbola described so that we can find the smaller focal distance of the specified point on the hyperbola.
Therefore, the smaller focal distance of the point on the hyperbola is \( 7 \sqrt{\frac{2}{5}} - \frac{8}{3} \).
Given:
\[ \frac{x^2}{9} + \frac{y^2}{25} = 1 \] \[ a = 3, \; b = 5 \] \[ e = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad \therefore \text{foci} = (0, \pm be) = (0, \pm 4) \] \[ e_1 = \frac{4}{5} \times \frac{15}{8} = \frac{3}{2} \]
Let equation hyperbola
\[ \frac{x^2}{A^2} - \frac{y^2}{B^2} = -1 \] \[ \therefore B = e_1 = 4 \quad \therefore B = \frac{8}{3} \] \[ \therefore A^2 = B^2 \left( e_1^2 - 1 \right) = \frac{64}{9} \left( \frac{9}{4} - 1 \right) \quad \therefore A^2 = \frac{80}{9} \]
\[ \frac{x^2}{80} - \frac{y^2}{64} = -1 \]
Directrix:
\[ y = \pm \frac{B}{e_1} = \pm \frac{16}{9} \] \[ PS = e \cdot PM = \frac{3}{2} \left[ \frac{14}{3} \cdot \sqrt{\frac{2}{5} - \frac{16}{9}} \right] \] \[ = 7 {\sqrt\frac{2}{5} - \frac{8}{3}} \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
