To solve this problem, we need to determine some properties of both the given ellipse and the hyperbola described so that we can find the smaller focal distance of the specified point on the hyperbola.
Therefore, the smaller focal distance of the point on the hyperbola is \( 7 \sqrt{\frac{2}{5}} - \frac{8}{3} \).
Given:
\[ \frac{x^2}{9} + \frac{y^2}{25} = 1 \] \[ a = 3, \; b = 5 \] \[ e = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad \therefore \text{foci} = (0, \pm be) = (0, \pm 4) \] \[ e_1 = \frac{4}{5} \times \frac{15}{8} = \frac{3}{2} \]
Let equation hyperbola
\[ \frac{x^2}{A^2} - \frac{y^2}{B^2} = -1 \] \[ \therefore B = e_1 = 4 \quad \therefore B = \frac{8}{3} \] \[ \therefore A^2 = B^2 \left( e_1^2 - 1 \right) = \frac{64}{9} \left( \frac{9}{4} - 1 \right) \quad \therefore A^2 = \frac{80}{9} \]
\[ \frac{x^2}{80} - \frac{y^2}{64} = -1 \]
Directrix:
\[ y = \pm \frac{B}{e_1} = \pm \frac{16}{9} \] \[ PS = e \cdot PM = \frac{3}{2} \left[ \frac{14}{3} \cdot \sqrt{\frac{2}{5} - \frac{16}{9}} \right] \] \[ = 7 {\sqrt\frac{2}{5} - \frac{8}{3}} \]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 