To solve this problem, we need to determine some properties of both the given ellipse and the hyperbola described so that we can find the smaller focal distance of the specified point on the hyperbola.
Therefore, the smaller focal distance of the point on the hyperbola is \( 7 \sqrt{\frac{2}{5}} - \frac{8}{3} \).
Given:
\[ \frac{x^2}{9} + \frac{y^2}{25} = 1 \] \[ a = 3, \; b = 5 \] \[ e = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad \therefore \text{foci} = (0, \pm be) = (0, \pm 4) \] \[ e_1 = \frac{4}{5} \times \frac{15}{8} = \frac{3}{2} \]
Let equation hyperbola
\[ \frac{x^2}{A^2} - \frac{y^2}{B^2} = -1 \] \[ \therefore B = e_1 = 4 \quad \therefore B = \frac{8}{3} \] \[ \therefore A^2 = B^2 \left( e_1^2 - 1 \right) = \frac{64}{9} \left( \frac{9}{4} - 1 \right) \quad \therefore A^2 = \frac{80}{9} \]
\[ \frac{x^2}{80} - \frac{y^2}{64} = -1 \]
Directrix:
\[ y = \pm \frac{B}{e_1} = \pm \frac{16}{9} \] \[ PS = e \cdot PM = \frac{3}{2} \left[ \frac{14}{3} \cdot \sqrt{\frac{2}{5} - \frac{16}{9}} \right] \] \[ = 7 {\sqrt\frac{2}{5} - \frac{8}{3}} \]
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 