Given:
\[ \frac{x^2}{9} + \frac{y^2}{25} = 1 \] \[ a = 3, \; b = 5 \] \[ e = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad \therefore \text{foci} = (0, \pm be) = (0, \pm 4) \] \[ e_1 = \frac{4}{5} \times \frac{15}{8} = \frac{3}{2} \]
Let equation hyperbola
\[ \frac{x^2}{A^2} - \frac{y^2}{B^2} = -1 \] \[ \therefore B = e_1 = 4 \quad \therefore B = \frac{8}{3} \] \[ \therefore A^2 = B^2 \left( e_1^2 - 1 \right) = \frac{64}{9} \left( \frac{9}{4} - 1 \right) \quad \therefore A^2 = \frac{80}{9} \]
\[ \frac{x^2}{80} - \frac{y^2}{64} = -1 \]
Directrix:
\[ y = \pm \frac{B}{e_1} = \pm \frac{16}{9} \] \[ PS = e \cdot PM = \frac{3}{2} \left[ \frac{14}{3} \cdot \sqrt{\frac{2}{5} - \frac{16}{9}} \right] \] \[ = 7 {\sqrt\frac{2}{5} - \frac{8}{3}} \]
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: