To solve this problem, we need to determine some properties of both the given ellipse and the hyperbola described so that we can find the smaller focal distance of the specified point on the hyperbola.
Therefore, the smaller focal distance of the point on the hyperbola is \( 7 \sqrt{\frac{2}{5}} - \frac{8}{3} \).
Given:
\[ \frac{x^2}{9} + \frac{y^2}{25} = 1 \] \[ a = 3, \; b = 5 \] \[ e = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad \therefore \text{foci} = (0, \pm be) = (0, \pm 4) \] \[ e_1 = \frac{4}{5} \times \frac{15}{8} = \frac{3}{2} \]
Let equation hyperbola
\[ \frac{x^2}{A^2} - \frac{y^2}{B^2} = -1 \] \[ \therefore B = e_1 = 4 \quad \therefore B = \frac{8}{3} \] \[ \therefore A^2 = B^2 \left( e_1^2 - 1 \right) = \frac{64}{9} \left( \frac{9}{4} - 1 \right) \quad \therefore A^2 = \frac{80}{9} \]
\[ \frac{x^2}{80} - \frac{y^2}{64} = -1 \]
Directrix:
\[ y = \pm \frac{B}{e_1} = \pm \frac{16}{9} \] \[ PS = e \cdot PM = \frac{3}{2} \left[ \frac{14}{3} \cdot \sqrt{\frac{2}{5} - \frac{16}{9}} \right] \] \[ = 7 {\sqrt\frac{2}{5} - \frac{8}{3}} \]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.