We are given the differential equation:
\[ (t + 1) \frac{dx}{dt} = 2x + (t + 1)^4 \]
To solve this, divide both sides by \((t + 1)\):
\[ \frac{dx}{dt} = \frac{2x}{t + 1} + (t + 1)^3 \]
Now, separate the variables:
\[ \frac{dx}{2x} = \frac{1}{t + 1} dt + (t + 1)^2 dt \]
We can now integrate both sides:
\[ \int \frac{1}{2x} dx = \int \left(\frac{1}{t + 1} + (t + 1)^2\right) dt \]
The left-hand side gives:
\[ \frac{1}{2} \ln |x| \]
For the right-hand side, integrate each term:
\[ \int \frac{1}{t + 1} dt = \ln |t + 1| \quad \text{and} \quad \int (t + 1)^2 dt = \frac{(t + 1)^3}{3} \]
Thus, we have:
\[ \frac{1}{2} \ln |x| = \ln |t + 1| + \frac{(t + 1)^3}{3} + C \]
Exponentiate both sides:
\[ |x| = e^{2 \ln |t + 1| + \frac{2(t + 1)^3}{3} + 2C} \]
Simplify:
\[ x = A(t + 1)^2 e^{\frac{2(t + 1)^3}{3}} \]
Now, use the initial condition \(x(0) = 2\):
\[ x(0) = A(1)^2 e^0 = 2 \implies A = 2 \]
Thus, the solution is:
\[ x = 2(t + 1)^2 e^{\frac{2(t + 1)^3}{3}} \]
Finally, calculate \(x(1)\):
\[ x(1) = 2(1 + 1)^2 e^{\frac{2(2)^3}{3}} = 2(2)^2 e^{\frac{16}{3}} = 2 \times 4 \times e^{\frac{16}{3}} \approx 14 \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.