• Substitute $x = 1$:
$\therefore a = 1$
• Consider:
$b = \lim_{x \to 0} \left( \frac{x \int_0^x \frac{\log(1+t)}{1+t^2} dt}{x^2} \right)$
• Using L'Hôpital's Rule:
$b = \lim_{x \to 0} \left( \frac{\frac{d}{dx} \left( \int_0^x \frac{\log(1+t)}{1+t^2} dt \right)}{\frac{d}{dx}(x^2)} \right) = \lim_{x \to 0} \left( \frac{\log(1+x)}{2x} \right) = \lim_{x \to 0} \frac{1}{2(1+x)} = \frac{1}{2}$
• Now, for the equations $cx^2 + dx + e = 0$ and $2bx^2 + ax + 4 = 0$ to have a common root:
$cx^2 + dx + e = 0$, $2bx^2 + ax + 4 = 0$
Since $D < 0$ (where $D$ denotes the discriminant of the equation), we find:
$c : d : e = 1 : 1 : 4$
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).