We need to find the number of non-negative integer solutions to the equation \(x + 2y + 3z = 42\), where \(x, y, z \in \mathbb{Z}_{\ge 0}\).
We can count the number of non-negative integer solutions by fixing the value of \(z\) and then counting the number of solutions for \(x\) and \(y\) for each fixed \(z\).
Step 1: Rewrite the equation in terms of \(z\).
\[ x + 2y = 42 - 3z \]
Since \(x, y \ge 0\), we require \(42 - 3z \ge 0 \Rightarrow z \le 14\). So \(z\) can range from 0 to 14.
Step 2: For a fixed \(z\), find the number of non-negative integer solutions \((x, y)\) to \(x + 2y = 42 - 3z\).
Let \(N = 42 - 3z\). Then \(x = N - 2y\), and we require \(N - 2y \ge 0 \Rightarrow y \le \frac{N}{2}\).
So \(y\) can range from 0 to \(\left\lfloor \frac{N}{2} \right\rfloor\).
Thus, for fixed \(z\), the number of solutions is:
\[ \left\lfloor \frac{N}{2} \right\rfloor + 1 = \left\lfloor \frac{42 - 3z}{2} \right\rfloor + 1 \]
Step 3: Compute the number of solutions for each \(z\) from 0 to 14.
We need to consider the parity of \(42 - 3z\):
Let's compute \(\left\lfloor \frac{42 - 3z}{2} \right\rfloor + 1\) for \(z = 0, 1, 2, \dots, 14\):
For \(z = 0\): \(N = 42\), even, \(\left\lfloor \frac{42}{2} \right\rfloor + 1 = 21 + 1 = 22\)
For \(z = 1\): \(N = 39\), odd, \(\left\lfloor \frac{39}{2} \right\rfloor + 1 = 19 + 1 = 20\)
For \(z = 2\): \(N = 36\), even, \(\left\lfloor \frac{36}{2} \right\rfloor + 1 = 18 + 1 = 19\)
For \(z = 3\): \(N = 33\), odd, \(\left\lfloor \frac{33}{2} \right\rfloor + 1 = 16 + 1 = 17\)
For \(z = 4\): \(N = 30\), even, \(\left\lfloor \frac{30}{2} \right\rfloor + 1 = 15 + 1 = 16\)
For \(z = 5\): \(N = 27\), odd, \(\left\lfloor \frac{27}{2} \right\rfloor + 1 = 13 + 1 = 14\)
For \(z = 6\): \(N = 24\), even, \(\left\lfloor \frac{24}{2} \right\rfloor + 1 = 12 + 1 = 13\)
For \(z = 7\): \(N = 21\), odd, \(\left\lfloor \frac{21}{2} \right\rfloor + 1 = 10 + 1 = 11\)
For \(z = 8\): \(N = 18\), even, \(\left\lfloor \frac{18}{2} \right\rfloor + 1 = 9 + 1 = 10\)
For \(z = 9\): \(N = 15\), odd, \(\left\lfloor \frac{15}{2} \right\rfloor + 1 = 7 + 1 = 8\)
For \(z = 10\): \(N = 12\), even, \(\left\lfloor \frac{12}{2} \right\rfloor + 1 = 6 + 1 = 7\)
For \(z = 11\): \(N = 9\), odd, \(\left\lfloor \frac{9}{2} \right\rfloor + 1 = 4 + 1 = 5\)
For \(z = 12\): \(N = 6\), even, \(\left\lfloor \frac{6}{2} \right\rfloor + 1 = 3 + 1 = 4\)
For \(z = 13\): \(N = 3\), odd, \(\left\lfloor \frac{3}{2} \right\rfloor + 1 = 1 + 1 = 2\)
For \(z = 14\): \(N = 0\), even, \(\left\lfloor \frac{0}{2} \right\rfloor + 1 = 0 + 1 = 1\)
Step 4: Sum all these values.
\[ \text{Total} = 22 + 20 + 19 + 17 + 16 + 14 + 13 + 11 + 10 + 8 + 7 + 5 + 4 + 2 + 1 \]
Group them for easier addition:
First group: \(22 + 20 = 42\)
Second group: \(19 + 17 = 36\)
Third group: \(16 + 14 = 30\)
Fourth group: \(13 + 11 = 24\)
Fifth group: \(10 + 8 = 18\)
Sixth group: \(7 + 5 = 12\)
Seventh group: \(4 + 2 + 1 = 7\)
Now sum these group totals:
\[ 42 + 36 = 78,\quad 78 + 30 = 108,\quad 108 + 24 = 132,\quad 132 + 18 = 150,\quad 150 + 12 = 162,\quad 162 + 7 = 169 \]
Hence, the number of elements in the set \(S\) is 169.
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.