To solve the given limit problem, we need to evaluate \(\lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2}\). Let's break down the solution into clear steps:
For small values of \(x\), we know that \(|\sin x| \approx |x|\). Therefore, \(|\sin x|\) behaves like \(|x|\) near zero.
The expression \(e^{2|\sin x|}\) can be expanded using the Taylor series for \(e^y\) around \(y=0\): \(e^y \approx 1 + y + \frac{y^2}{2} + \cdots\). Applying this to \(2|\sin x|\), we get:
\(e^{2|\sin x|} \approx 1 + 2|\sin x| + 2|\sin x|^2/2 + \cdots = 1 + 2|\sin x| + 2|\sin x|^2\)
Substituting the approximations in the original limit expression, we have:
\(\frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2} \approx \frac{(1 + 2|\sin x| + 2|\sin x|^2) - 2|\sin x| - 1}{x^2}\)
Simplifying this, we get:
\(\frac{2|\sin x|^2}{x^2}\)
Knowing \(|\sin x|^2 \approx x^2\) when \(x \to 0\), the expression becomes:
\(\frac{2x^2}{x^2} = 2\)
Thus, by evaluating the above expression, we arrive at:
\(\lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2} = 2\)
This confirms that the correct answer is \(2\).
Consider the limit:
\[ \lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2} \]
Expanding \( e^{2|\sin x|} \) around \( x = 0 \):
\[ \lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{|\sin x|^2} \cdot \frac{\sin^2 x}{x^2} \]
Let \( |\sin x| = t \):
\[ \lim_{t \to 0} \frac{e^{2t} - 2t - 1}{t^2} \cdot \lim_{x \to 0} \frac{\sin^2 x}{x^2} \]
Evaluating the first limit:
\[ \lim_{t \to 0} \frac{2e^{2t} - 2}{2t} \cdot 1 = 2 \times 1 = 2 \]
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
Designate whether each of the following compounds is aromatic or not aromatic.
