Consider the limit:
\[ \lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2} \]
Expanding \( e^{2|\sin x|} \) around \( x = 0 \):
\[ \lim_{x \to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{|\sin x|^2} \cdot \frac{\sin^2 x}{x^2} \]
Let \( |\sin x| = t \):
\[ \lim_{t \to 0} \frac{e^{2t} - 2t - 1}{t^2} \cdot \lim_{x \to 0} \frac{\sin^2 x}{x^2} \]
Evaluating the first limit:
\[ \lim_{t \to 0} \frac{2e^{2t} - 2}{2t} \cdot 1 = 2 \times 1 = 2 \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).