Let ABC ABC ABC be a triangle formed by the lines 7x−6y+3=0 7x - 6y + 3 = 0 7x−6y+3=0, x+2y−31=0 x + 2y - 31 = 0 x+2y−31=0, and 9x−2y−19=0 9x - 2y - 19 = 0 9x−2y−19=0. Let the point (h,k) (h, k) (h,k) be the image of the centroid of △ABC \triangle ABC △ABC in the line 3x+6y−53=0 3x + 6y - 53 = 0 3x+6y−53=0. Then h2+k2+hk h^2 + k^2 + hk h2+k2+hk is equal to:
Let a→=i+2j+k \overrightarrow{a} = i + 2j + k a=i+2j+k and b→=2i+7j+3k \overrightarrow{b} = 2i + 7j + 3k b=2i+7j+3k. Let L1:r→=(−i+2j+k)+λa→,λ∈R L_1 : \overrightarrow{r} = (-i + 2j + k) + \lambda \overrightarrow{a}, \quad \lambda \in \mathbb{R} L1:r=(−i+2j+k)+λa,λ∈R and L2:r→=(j+k)+μb→,μ∈R L_2 : \overrightarrow{r} = (j + k) + \mu \overrightarrow{b}, \quad \mu \in \mathbb{R} L2:r=(j+k)+μb,μ∈R be two lines. If the line L3 L_3 L3 passes through the point of intersection of L1 L_1 L1 and L2 L_2 L2, and is parallel to a→+b→ \overrightarrow{a} + \overrightarrow{b} a+b, then L3 L_3 L3 passes through the point:
If y=x−x2 y = x - x^2 y=x−x2, then the rate of change of y2 y^2 y2 with respect to x2 x^2 x2 at x=2 x = 2 x=2 is:
The distance from a point (1,1,1) (1,1,1) (1,1,1) to a variable plane π\piπ is 12 units and the points of intersections of the plane with X, Y, Z-axes are A,B,C A, B, C A,B,C respectively. If the point of intersection of the planes through the points A,B,C A, B, C A,B,C and parallel to the coordinate planes is P P P, then the equation of the locus of P P P is:
If A(1,0,2) A(1,0,2) A(1,0,2), B(2,1,0) B(2,1,0) B(2,1,0), C(2,−5,3) C(2,-5,3) C(2,−5,3), and D(0,3,2) D(0,3,2) D(0,3,2) are four points and the point of intersection of the lines AB AB AB and CD CD CD is P(a,b,c) P(a,b,c) P(a,b,c), then a+b+c=? a + b + c = ? a+b+c=?