We analyze the function \( f(x) = |2x^2 + 5|x| - 3| \) in two steps: checking continuity and differentiability.
Step 1: Continuity
The function \( f(x) \) is a composition of absolute values and polynomials, which are continuous everywhere. Hence, \( f(x) \) is continuous for all \( x \in \mathbb{R} \).
\[ m = 0 \quad (\text{Number of points where } f(x) \text{ is not continuous}) \]
Step 2: Differentiability
The function \( f(x) \) involves absolute values, which may cause non-differentiability at specific points:
Hence, the total number of points of non-differentiability is:
\[ n = 3 \quad (\text{at } x = -\frac{3}{2}, 0, \frac{3}{2}). \]
Final Calculation
\[ m + n = 0 + 3 = 3. \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: