To solve this problem, we need to analyze the given function \( f(x) = |2x^2 + 5|x - 3| \), which involves both an absolute value and multiplication operations. We're tasked with determining the number of points where the function is not continuous and differentiating.
Therefore, the correct answer is 3, where \( m + n = 3 \).
We analyze the function \( f(x) = |2x^2 + 5|x| - 3| \) in two steps: checking continuity and differentiability.
Step 1: Continuity
The function \( f(x) \) is a composition of absolute values and polynomials, which are continuous everywhere. Hence, \( f(x) \) is continuous for all \( x \in \mathbb{R} \).
\[ m = 0 \quad (\text{Number of points where } f(x) \text{ is not continuous}) \]
Step 2: Differentiability
The function \( f(x) \) involves absolute values, which may cause non-differentiability at specific points:
Hence, the total number of points of non-differentiability is:
\[ n = 3 \quad (\text{at } x = -\frac{3}{2}, 0, \frac{3}{2}). \]
Final Calculation
\[ m + n = 0 + 3 = 3. \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
