To solve the differential equation \( y \frac{dx}{dy} = x (\log_e x - \log_e y + 1) \), we first rearrange the equation by separating variables.
The given equation is:
\(y \frac{dx}{dy} = x (\log_e x - \log_e y + 1)\)
Rearranging, we have:
\(\frac{dx}{dy} = \frac{x}{y} (\log_e x - \log_e y + 1)\)
Bringing all terms involving \( x \) and \( y \) on one side:
\(\frac{y}{x} \frac{dx}{dy} = \log_e x - \log_e y + 1\)
This can be rewritten as:
\(\frac{y}{x} \frac{dx}{dy} = \log_e \frac{x}{y} +1\)
Let \(u = \log_e \frac{x}{y}\). Then \(du = \left(\frac{1}{x}\frac{dx}{dy} - \frac{1}{y} \right)\, dy\).
Substituting this into our differential equation, we integrate along:
\(\frac{dy}{dx} = \frac{\log_e \frac{x}{y} + 1}{\frac{y}{x}} = \left(\log_e \frac{x}{y} + 1\right) \frac{x}{y}\)
This leads us to:
\(y\, \frac{dx}{dy} = x \left(\log_e \frac{x}{y} + 1\right)\)
Integrating both sides with respect to \( y \), we apply the initial condition given by the point \((e, 1)\).
From the initial condition \((x, y) = (e, 1)\), substituting in, we have:
\(\log_e \frac{e}{1} = 1\)
This gives the solution satisfying \(\left| \log_e \frac{x}{y} \right| = y\), matching the given point \((e, 1)\).
Therefore, the correct solution curve is:
\(\left| \log_e \frac{x}{y} \right| = y\)
Given:
\[ \frac{dx}{dy} = \frac{x}{y} \left( \ln \left( \frac{x}{y} \right) + 1 \right) \]
Let:
\[ \frac{x}{y} = t \quad \implies \quad x = ty \]
Differentiating:
\[ \frac{dx}{dy} = t + y \frac{dt}{dy} \]
Substitute:
\[ t + y \frac{dt}{dy} = t \left( \ln(t) + 1 \right) \]
Rearranging:
\[ \frac{dt}{dy} = \frac{t \ln(t)}{y} \]
Integrating both sides:
\[ \int \frac{1}{t} dt = \int \frac{dy}{y} \]
Let \( \ln t = p \):
\[ dp = \frac{1}{t} dt \quad \implies \quad \ln \left( \frac{x}{y} \right) = y \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 