Given:
\[ \frac{dx}{dy} = \frac{x}{y} \left( \ln \left( \frac{x}{y} \right) + 1 \right) \]
Let:
\[ \frac{x}{y} = t \quad \implies \quad x = ty \]
Differentiating:
\[ \frac{dx}{dy} = t + y \frac{dt}{dy} \]
Substitute:
\[ t + y \frac{dt}{dy} = t \left( \ln(t) + 1 \right) \]
Rearranging:
\[ \frac{dt}{dy} = \frac{t \ln(t)}{y} \]
Integrating both sides:
\[ \int \frac{1}{t} dt = \int \frac{dy}{y} \]
Let \( \ln t = p \):
\[ dp = \frac{1}{t} dt \quad \implies \quad \ln \left( \frac{x}{y} \right) = y \]