Given:
\[ f(x) = \frac{4x + 3}{6x - 4} \]
Compute \( g(x) \) as:
\[ g\left(\frac{4x + 3}{6x - 4}\right) = \frac{\left(\frac{4x + 3}{6x - 4}\right) + 3}{\left(\frac{4x + 3}{6x - 4}\right) - 4} = \frac{34x}{34} = x \]
Thus:
\[ g(x) = x \quad \implies \quad g(g(g(4))) = 4 \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).