To solve the given problem, we need to evaluate \( (gogogog)(4) \) where \( g(x) = (fof)(x) \) and \( f(x) = \frac{4x + 5}{6x - 4} \). Let's proceed step-by-step:
We have \( f(x) = \frac{4x+5}{6x-4} \). So, \( f(f(x)) \) means substitute \( f(x) \) into itself.
\( f(f(x)) = f\left(\frac{4x+5}{6x-4}\right) \)
Substitute \( \frac{4x+5}{6x-4} \) in place of \( x \) in the function \( f \):
\[ f(f(x)) = \frac{4\left(\frac{4x+5}{6x-4}\right) + 5}{6\left(\frac{4x+5}{6x-4}\right) - 4} = \frac{\frac{16x + 20 + 5(6x-4)}{6x-4}}{\frac{24x + 30 - 24x - 16}{6x-4}} \]
Simplifying the numerator:
\[ = \frac{16x + 20 + 30x - 20}{6x-4} = \frac{46x}{6x-4} \]
Simplifying the denominator:
\[ = \frac{30-16}{6x-4} = \frac{14}{6x-4} \]
Thus:
\[ f(f(x)) = \frac{\frac{46x}{6x-4}}{\frac{14}{6x-4}} = \frac{46x}{14} = \frac{23x}{7} \]
So, \( (fof)(x) = \frac{23x}{7} \) and this is \( g(x) = \frac{23x}{7} \).
Calculate \( g(4) \):
\[ g(4) = \frac{23 \times 4}{7} = \frac{92}{7} \]
Calculate \( g(g(4)) \):
\[ g(g(4)) = g\left(\frac{92}{7}\right) = \frac{23 \times \frac{92}{7}}{7} = \frac{2116}{49} \]
Calculate \( g(g(g(4))) \):
\[ g(g(g(4))) = g\left(\frac{2116}{49}\right) = \frac{23 \cdot \frac{2116}{49}}{7} = \frac{48764}{343} = 142 \]
Calculate \( g(g(g(g(4)))) \):
\[ g(g(g(g(4)))) = g(142) = \frac{23 \cdot 142}{7} = \frac{3266}{7} = 466 \]
The final answer is \(\boxed{4}\).
Given:
\[ f(x) = \frac{4x + 3}{6x - 4} \]
Compute \( g(x) \) as:
\[ g\left(\frac{4x + 3}{6x - 4}\right) = \frac{\left(\frac{4x + 3}{6x - 4}\right) + 3}{\left(\frac{4x + 3}{6x - 4}\right) - 4} = \frac{34x}{34} = x \]
Thus:
\[ g(x) = x \quad \implies \quad g(g(g(4))) = 4 \]
Let \[ A = \{x : |x^2 - 10| \le 6\} \quad \text{and} \quad B = \{x : |x - 2| > 1\}. \] Then

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
