To solve the given problem, we need to evaluate \( (gogogog)(4) \) where \( g(x) = (fof)(x) \) and \( f(x) = \frac{4x + 5}{6x - 4} \). Let's proceed step-by-step:
We have \( f(x) = \frac{4x+5}{6x-4} \). So, \( f(f(x)) \) means substitute \( f(x) \) into itself.
\( f(f(x)) = f\left(\frac{4x+5}{6x-4}\right) \)
Substitute \( \frac{4x+5}{6x-4} \) in place of \( x \) in the function \( f \):
\[ f(f(x)) = \frac{4\left(\frac{4x+5}{6x-4}\right) + 5}{6\left(\frac{4x+5}{6x-4}\right) - 4} = \frac{\frac{16x + 20 + 5(6x-4)}{6x-4}}{\frac{24x + 30 - 24x - 16}{6x-4}} \]
Simplifying the numerator:
\[ = \frac{16x + 20 + 30x - 20}{6x-4} = \frac{46x}{6x-4} \]
Simplifying the denominator:
\[ = \frac{30-16}{6x-4} = \frac{14}{6x-4} \]
Thus:
\[ f(f(x)) = \frac{\frac{46x}{6x-4}}{\frac{14}{6x-4}} = \frac{46x}{14} = \frac{23x}{7} \]
So, \( (fof)(x) = \frac{23x}{7} \) and this is \( g(x) = \frac{23x}{7} \).
Calculate \( g(4) \):
\[ g(4) = \frac{23 \times 4}{7} = \frac{92}{7} \]
Calculate \( g(g(4)) \):
\[ g(g(4)) = g\left(\frac{92}{7}\right) = \frac{23 \times \frac{92}{7}}{7} = \frac{2116}{49} \]
Calculate \( g(g(g(4))) \):
\[ g(g(g(4))) = g\left(\frac{2116}{49}\right) = \frac{23 \cdot \frac{2116}{49}}{7} = \frac{48764}{343} = 142 \]
Calculate \( g(g(g(g(4)))) \):
\[ g(g(g(g(4)))) = g(142) = \frac{23 \cdot 142}{7} = \frac{3266}{7} = 466 \]
The final answer is \(\boxed{4}\).
Given:
\[ f(x) = \frac{4x + 3}{6x - 4} \]
Compute \( g(x) \) as:
\[ g\left(\frac{4x + 3}{6x - 4}\right) = \frac{\left(\frac{4x + 3}{6x - 4}\right) + 3}{\left(\frac{4x + 3}{6x - 4}\right) - 4} = \frac{34x}{34} = x \]
Thus:
\[ g(x) = x \quad \implies \quad g(g(g(4))) = 4 \]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 