Given:
\[ f(x) = \frac{4x + 3}{6x - 4} \]
Compute \( g(x) \) as:
\[ g\left(\frac{4x + 3}{6x - 4}\right) = \frac{\left(\frac{4x + 3}{6x - 4}\right) + 3}{\left(\frac{4x + 3}{6x - 4}\right) - 4} = \frac{34x}{34} = x \]
Thus:
\[ g(x) = x \quad \implies \quad g(g(g(4))) = 4 \]
The shaded region in the Venn diagram represents