If \[ \int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \, dx = \sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e \left( \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| \right) + C, \] where \( C \) is the constant of integration, then \( \alpha + 2\beta \) is equal to ……..
Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \] \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
For some \( a, b \), let \( f(x) = \left| \begin{matrix} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{matrix} \right| \), where \( x \neq 0 \), \( \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b \). Then \( (\lambda + \mu + \nu)^2 \) is equal to:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}