\[ \alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \cdot \binom{n}{r} \] \[ \alpha = 4 \sum_{r=0}^{n} r^2 \cdot \binom{n-1}{r-1} + 2 \sum_{r=0}^{n} r \cdot \binom{n-1}{r} + \sum_{r=0}^{n} n \cdot \binom{n}{r} \] \[ + 4n \sum_{r=0}^{n} (n-1) \cdot \binom{n-1}{r-1} + 2n \sum_{r=0}^{n} \binom{n-1}{r-1} + \sum_{r=0}^{n} n \cdot \binom{n}{r} \] \[ \alpha = 4n(n-1) \cdot 2n^2 + 4n \cdot n^2 + 2n \cdot 2n \cdot n^2 \] \[ \alpha = 2n(n+1)^2 \] \[ \beta = \sum_{r=0}^{n} \binom{r+1}{r+1} + \frac{1}{n+1} \] \[ \beta = \sum_{r=0}^{n} \binom{n+1}{r+1} + \frac{1}{n+1} \] \[ \beta = \frac{1}{n+1} \left( 1 + n+1 \cdot \binom{C1} + ... + \binom{n+1}{n+1} \right) \] \[ \beta = \frac{2^{n+1}}{n+1} \] \[ \frac{2a}{\beta} = \frac{2^{n+1} (n+1)^2}{2^{n+1}} \cdot (n+1)^3 = (n+1)^3 \] \[ 140 < (n+1)^3 < 281 \] \[ n = 4 \Rightarrow (n+1)^3 = 125 \] \[ n = 5 \Rightarrow (n+1)^3 = 216 \] \[ n = 6 \Rightarrow (n+1)^3 = 343 \] \[ \Rightarrow n = 5 \]
The expression for \(\alpha\) is:
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r}.$$
Expand the summation:
$$\alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r}.$$
Using standard summation identities for binomial coefficients:
$$\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}, \quad \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2}, \quad \sum_{r=0}^{n} \binom{n}{r} = 2^n.$$
Substitute these results:
$$\alpha = 4n(n-1) \times 2^{n-2} + 2n \times 2^{n-1} + 2^n.$$
Factorize:
$$\alpha = 2^{n-2} [4n(n-1) + 8n + 4].$$
Simplify:
$$\alpha = 2^{n-2} \times 2n(n+1) = 2n(n+1)2^{n-2}.$$
Now for \(\beta\):
$$\beta = \sum_{r=0}^{n} \binom{n}{r+1} + \frac{1}{n+1}.$$
Rewrite the summation:
$$\sum_{r=0}^{n} \binom{n}{r+1} = \sum_{r=1}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} - \binom{n}{0}.$$
Using the summation of binomial coefficients:
$$\sum_{r=0}^{n} \binom{n}{r} = 2^n, \quad \binom{n}{0} = 1.$$
Thus:
$$\sum_{r=0}^{n} \binom{n}{r+1} = 2^n - 1.$$
Therefore:
$$\beta = (2^n - 1) + \frac{1}{n+1}.$$
Now calculate \(\frac{2\alpha}{\beta}\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 2^{n-2} \times 2n(n+1)}{(2^n - 1) + \frac{1}{n+1}}.$$
Simplify:
$$\frac{2\alpha}{\beta} = \frac{2^{n-1} \times n(n+1)^2}{2^n - 1 + \frac{1}{n+1}}.$$
Testing values of \(n\), find \(140 < \frac{2\alpha}{\beta} < 281\):
For \(n = 4\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 4 \times 5^2}{2^5 - 1 + \frac{1}{5}} = \frac{200}{31.2} \approx 125 \quad \text{(Too low)}.$$
For \(n = 5\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 5 \times 6^2}{2^6 - 1 + \frac{1}{6}} = \frac{360}{63.17} \approx 216.$$
For \(n = 6\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 6 \times 7^2}{2^7 - 1 + \frac{1}{6}}.$$
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.