\[ \alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \cdot \binom{n}{r} \] \[ \alpha = 4 \sum_{r=0}^{n} r^2 \cdot \binom{n-1}{r-1} + 2 \sum_{r=0}^{n} r \cdot \binom{n-1}{r} + \sum_{r=0}^{n} n \cdot \binom{n}{r} \] \[ + 4n \sum_{r=0}^{n} (n-1) \cdot \binom{n-1}{r-1} + 2n \sum_{r=0}^{n} \binom{n-1}{r-1} + \sum_{r=0}^{n} n \cdot \binom{n}{r} \] \[ \alpha = 4n(n-1) \cdot 2n^2 + 4n \cdot n^2 + 2n \cdot 2n \cdot n^2 \] \[ \alpha = 2n(n+1)^2 \] \[ \beta = \sum_{r=0}^{n} \binom{r+1}{r+1} + \frac{1}{n+1} \] \[ \beta = \sum_{r=0}^{n} \binom{n+1}{r+1} + \frac{1}{n+1} \] \[ \beta = \frac{1}{n+1} \left( 1 + n+1 \cdot \binom{C1} + ... + \binom{n+1}{n+1} \right) \] \[ \beta = \frac{2^{n+1}}{n+1} \] \[ \frac{2a}{\beta} = \frac{2^{n+1} (n+1)^2}{2^{n+1}} \cdot (n+1)^3 = (n+1)^3 \] \[ 140 < (n+1)^3 < 281 \] \[ n = 4 \Rightarrow (n+1)^3 = 125 \] \[ n = 5 \Rightarrow (n+1)^3 = 216 \] \[ n = 6 \Rightarrow (n+1)^3 = 343 \] \[ \Rightarrow n = 5 \]
The expression for \(\alpha\) is:
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r}.$$
Expand the summation:
$$\alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r}.$$
Using standard summation identities for binomial coefficients:
$$\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}, \quad \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2}, \quad \sum_{r=0}^{n} \binom{n}{r} = 2^n.$$
Substitute these results:
$$\alpha = 4n(n-1) \times 2^{n-2} + 2n \times 2^{n-1} + 2^n.$$
Factorize:
$$\alpha = 2^{n-2} [4n(n-1) + 8n + 4].$$
Simplify:
$$\alpha = 2^{n-2} \times 2n(n+1) = 2n(n+1)2^{n-2}.$$
Now for \(\beta\):
$$\beta = \sum_{r=0}^{n} \binom{n}{r+1} + \frac{1}{n+1}.$$
Rewrite the summation:
$$\sum_{r=0}^{n} \binom{n}{r+1} = \sum_{r=1}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} - \binom{n}{0}.$$
Using the summation of binomial coefficients:
$$\sum_{r=0}^{n} \binom{n}{r} = 2^n, \quad \binom{n}{0} = 1.$$
Thus:
$$\sum_{r=0}^{n} \binom{n}{r+1} = 2^n - 1.$$
Therefore:
$$\beta = (2^n - 1) + \frac{1}{n+1}.$$
Now calculate \(\frac{2\alpha}{\beta}\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 2^{n-2} \times 2n(n+1)}{(2^n - 1) + \frac{1}{n+1}}.$$
Simplify:
$$\frac{2\alpha}{\beta} = \frac{2^{n-1} \times n(n+1)^2}{2^n - 1 + \frac{1}{n+1}}.$$
Testing values of \(n\), find \(140 < \frac{2\alpha}{\beta} < 281\):
For \(n = 4\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 4 \times 5^2}{2^5 - 1 + \frac{1}{5}} = \frac{200}{31.2} \approx 125 \quad \text{(Too low)}.$$
For \(n = 5\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 5 \times 6^2}{2^6 - 1 + \frac{1}{6}} = \frac{360}{63.17} \approx 216.$$
For \(n = 6\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 6 \times 7^2}{2^7 - 1 + \frac{1}{6}}.$$
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 