\[ \alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \cdot \binom{n}{r} \] \[ \alpha = 4 \sum_{r=0}^{n} r^2 \cdot \binom{n-1}{r-1} + 2 \sum_{r=0}^{n} r \cdot \binom{n-1}{r} + \sum_{r=0}^{n} n \cdot \binom{n}{r} \] \[ + 4n \sum_{r=0}^{n} (n-1) \cdot \binom{n-1}{r-1} + 2n \sum_{r=0}^{n} \binom{n-1}{r-1} + \sum_{r=0}^{n} n \cdot \binom{n}{r} \] \[ \alpha = 4n(n-1) \cdot 2n^2 + 4n \cdot n^2 + 2n \cdot 2n \cdot n^2 \] \[ \alpha = 2n(n+1)^2 \] \[ \beta = \sum_{r=0}^{n} \binom{r+1}{r+1} + \frac{1}{n+1} \] \[ \beta = \sum_{r=0}^{n} \binom{n+1}{r+1} + \frac{1}{n+1} \] \[ \beta = \frac{1}{n+1} \left( 1 + n+1 \cdot \binom{C1} + ... + \binom{n+1}{n+1} \right) \] \[ \beta = \frac{2^{n+1}}{n+1} \] \[ \frac{2a}{\beta} = \frac{2^{n+1} (n+1)^2}{2^{n+1}} \cdot (n+1)^3 = (n+1)^3 \] \[ 140 < (n+1)^3 < 281 \] \[ n = 4 \Rightarrow (n+1)^3 = 125 \] \[ n = 5 \Rightarrow (n+1)^3 = 216 \] \[ n = 6 \Rightarrow (n+1)^3 = 343 \] \[ \Rightarrow n = 5 \]
The expression for \(\alpha\) is:
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r}.$$
Expand the summation:
$$\alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r}.$$
Using standard summation identities for binomial coefficients:
$$\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}, \quad \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2}, \quad \sum_{r=0}^{n} \binom{n}{r} = 2^n.$$
Substitute these results:
$$\alpha = 4n(n-1) \times 2^{n-2} + 2n \times 2^{n-1} + 2^n.$$
Factorize:
$$\alpha = 2^{n-2} [4n(n-1) + 8n + 4].$$
Simplify:
$$\alpha = 2^{n-2} \times 2n(n+1) = 2n(n+1)2^{n-2}.$$
Now for \(\beta\):
$$\beta = \sum_{r=0}^{n} \binom{n}{r+1} + \frac{1}{n+1}.$$
Rewrite the summation:
$$\sum_{r=0}^{n} \binom{n}{r+1} = \sum_{r=1}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} - \binom{n}{0}.$$
Using the summation of binomial coefficients:
$$\sum_{r=0}^{n} \binom{n}{r} = 2^n, \quad \binom{n}{0} = 1.$$
Thus:
$$\sum_{r=0}^{n} \binom{n}{r+1} = 2^n - 1.$$
Therefore:
$$\beta = (2^n - 1) + \frac{1}{n+1}.$$
Now calculate \(\frac{2\alpha}{\beta}\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 2^{n-2} \times 2n(n+1)}{(2^n - 1) + \frac{1}{n+1}}.$$
Simplify:
$$\frac{2\alpha}{\beta} = \frac{2^{n-1} \times n(n+1)^2}{2^n - 1 + \frac{1}{n+1}}.$$
Testing values of \(n\), find \(140 < \frac{2\alpha}{\beta} < 281\):
For \(n = 4\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 4 \times 5^2}{2^5 - 1 + \frac{1}{5}} = \frac{200}{31.2} \approx 125 \quad \text{(Too low)}.$$
For \(n = 5\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 5 \times 6^2}{2^6 - 1 + \frac{1}{6}} = \frac{360}{63.17} \approx 216.$$
For \(n = 6\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 6 \times 7^2}{2^7 - 1 + \frac{1}{6}}.$$
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
