The expression for \(\alpha\) is:
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r}.$$
Expand the summation:
$$\alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r}.$$
Using standard summation identities for binomial coefficients:
$$\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}, \quad \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2}, \quad \sum_{r=0}^{n} \binom{n}{r} = 2^n.$$
Substitute these results:
$$\alpha = 4n(n-1) \times 2^{n-2} + 2n \times 2^{n-1} + 2^n.$$
Factorize:
$$\alpha = 2^{n-2} [4n(n-1) + 8n + 4].$$
Simplify:
$$\alpha = 2^{n-2} \times 2n(n+1) = 2n(n+1)2^{n-2}.$$
Now for \(\beta\):
$$\beta = \sum_{r=0}^{n} \binom{n}{r+1} + \frac{1}{n+1}.$$
Rewrite the summation:
$$\sum_{r=0}^{n} \binom{n}{r+1} = \sum_{r=1}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} - \binom{n}{0}.$$
Using the summation of binomial coefficients:
$$\sum_{r=0}^{n} \binom{n}{r} = 2^n, \quad \binom{n}{0} = 1.$$
Thus:
$$\sum_{r=0}^{n} \binom{n}{r+1} = 2^n - 1.$$
Therefore:
$$\beta = (2^n - 1) + \frac{1}{n+1}.$$
Now calculate \(\frac{2\alpha}{\beta}\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 2^{n-2} \times 2n(n+1)}{(2^n - 1) + \frac{1}{n+1}}.$$
Simplify:
$$\frac{2\alpha}{\beta} = \frac{2^{n-1} \times n(n+1)^2}{2^n - 1 + \frac{1}{n+1}}.$$
Testing values of \(n\), find \(140 < \frac{2\alpha}{\beta} < 281\):
For \(n = 4\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 4 \times 5^2}{2^5 - 1 + \frac{1}{5}} = \frac{200}{31.2} \approx 125 \quad \text{(Too low)}.$$
For \(n = 5\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 5 \times 6^2}{2^6 - 1 + \frac{1}{6}} = \frac{360}{63.17} \approx 216.$$
For \(n = 6\):
$$\frac{2\alpha}{\beta} = \frac{2 \times 6 \times 7^2}{2^7 - 1 + \frac{1}{6}}.$$
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: