To find the area \( A \), we need to evaluate the integral over the region bounded by \( y = x^2 + 2 \) and \( y = 2x + 2 \) from \( x = 0 \) to \( x = 3 \).
Step 1. Set up the area as the sum of two integrals based on the intersection point of \( y = x^2 + 2 \) and \( y = 2x + 2 \), which is \( x = 2 \):**
\(A = \int_{0}^{2} (x^2 + 2) \, dx + \int_{2}^{3} (2x + 2) \, dx\)
Step 2. Evaluate each integral:
- For \( \int_{0}^{2} (x^2 + 2) \, dx \):
\(= \left[ \frac{x^3}{3} + 2x \right]_0^2 = \frac{8}{3} + 4 = \frac{20}{3}\)
- For \( \int_{2}^{3} (2x + 2) \, dx \):
\(= \left[ x^2 + 2x \right]_2^3 = (9 + 6) - (4 + 4) = 7\)
Step 3. Combine the results:
\(A = \frac{20}{3} + 7 = \frac{41}{3}\)
Step 4. Calculate \( 12A \):
12A = \(12 \times \frac{41}{3}\) = 164
The Correct Answer is: \( 12A = 164 \)
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: