Solution: To find the local maxima and minima, we calculate the derivative \( f'(x) \) and analyze the critical points.
Step 1. Finding \( f'(x)\):
\(f(x) = 2x + 3(x)^{\frac{1}{3}}\)
\(f'(x) = 2 + 2x^{-\frac{2}{3}}\)
\(= 2 \left( 1 + \frac{1}{x^{\frac{2}{3}}} \right)\)
Step 2. Setting \( f'(x) = 0 \) to find critical points:
\(2 \left( 1 + \frac{1}{x^{\frac{2}{3}}} \right) = 0\)
\(1 + \frac{1}{x^{\frac{2}{3}}} = 0\)
\(x^{\frac{2}{3}} = -1 \implies x = -1\)
Step 3. Analyzing the sign of \( f'(x) \) around the critical points \( x = -1 \) and \( x = 0 \):
So, the function has a local maximum (M) at \( x = -1 \) and a local minimum (m) at \( x = 0 \).
The Correct Answer is: Exactly one point of local maxima and exactly one point of local minima
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: