Question:

If the shortest distance between the lines \[ \frac{x - \lambda}{2} = \frac{y - 4}{3} = \frac{z - 3}{4} \] and \[ \frac{x - 2}{4} = \frac{y - 4}{6} = \frac{z - 7}{8} \] is \(\frac{13}{\sqrt{29}}\), then a value of \(\lambda\) is:

Updated On: Nov 27, 2024
  • \(-\frac{13}{25}\)
  • \(\frac{13}{25}\)
  • 1
  • -1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let the parametric equations of the two lines be:

\(\vec{r}_1 = (\lambda \hat{i} + 4 \hat{j} + 3 \hat{k}) + \alpha (2 \hat{i} + 3 \hat{j} + 4 \hat{k})\),

\(\vec{r}_2 = (2 \hat{i} + 6 \hat{j} + 7 \hat{k}) + \beta (2 \hat{i} + 3 \hat{j} + 4 \hat{k})\).

Here, the direction vector for both lines is:

\(\vec{b} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k}\),

and the position vectors of points on the lines are:

\(\vec{a}_1 = \lambda \hat{i} + 4 \hat{j} + 3 \hat{k}\), \(\vec{a}_2 = 2 \hat{i} + 6 \hat{j} + 7 \hat{k}\).

The formula for the shortest distance between two skew lines is:

\(\text{Shortest distance} = \frac{|\vec{b} \times (\vec{a}_2 - \vec{a}_1) \cdot \vec{b}|}{|\vec{b}|} = \frac{13}{\sqrt{29}}\).

Substituting \(\vec{a}_2 - \vec{a}_1\):

\(\vec{a}_2 - \vec{a}_1 = (2 - \lambda) \hat{i} + 2 \hat{j} + 4 \hat{k}\).

The cross product \(\vec{b} \times (\vec{a}_2 - \vec{a}_1)\) simplifies as follows:

\(\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 2 - \lambda & 2 & 4 \end{vmatrix}\).

Solving this determinant gives:

\(\vec{b} \times (\vec{a}_2 - \vec{a}_1) = (-8 \hat{j} + 12 \hat{i} + 4 (2 - \lambda) \hat{j})\).

Taking the magnitude and using the formula for shortest distance:

\(\text{Shortest distance} = \frac{|(-8 \hat{j} + 12 \hat{i})|}{13}\).

Finally solving the quadratic for \(\lambda = 1\).

Was this answer helpful?
0
0

Top Questions on 3D Geometry

View More Questions

Questions Asked in JEE Main exam

View More Questions