\( r_1 = (\lambda \hat{i} + 4\hat{j} + 3\hat{k}) + \alpha (2\hat{i} + 3\hat{j} + 4\hat{k}) \)
\( r_2 = (2\hat{i} + 4\hat{j} + 7\hat{k}) + \beta (2\hat{i} + 3\hat{j} + 4\hat{k}) \)
\( \mathbf{b} = 2\hat{i} + 3\hat{j} + 4\hat{k} \)
\( \mathbf{a}_1 = \lambda \hat{i} + 4\hat{j} + 3\hat{k} \)
\( \mathbf{a}_2 = 2\hat{i} + 4\hat{j} + 7\hat{k} \)
Shortest distance: \( \dfrac{|\mathbf{b} \times (\mathbf{a}_2 - \mathbf{a}_1)|}{|\mathbf{b}|} = \dfrac{13}{\sqrt{29}} \)
\( |(2\hat{i} + 3\hat{j} + 4\hat{k}) \times ((2 - \lambda)\hat{i} + 4\hat{k})| = \dfrac{13}{\sqrt{29}} \)
\( |- 8\hat{i} - 3(2 - \lambda)\hat{k} + 12\hat{i} + 4(2 - \lambda)\hat{j}| = 13 \)
\( |12\hat{i} - 4\hat{j} + (3\lambda - 6)\hat{k}| = 13 \)
\( 144 + 16 \lambda^2 + (3\lambda - 6)^2 = 169 \)
\( 16\lambda^2 + (3\lambda - 6)^2 = 25 \)
\( \Rightarrow \lambda = 1 \)
Let the parametric equations of the two lines be:
\(\vec{r}_1 = (\lambda \hat{i} + 4 \hat{j} + 3 \hat{k}) + \alpha (2 \hat{i} + 3 \hat{j} + 4 \hat{k})\),
\(\vec{r}_2 = (2 \hat{i} + 6 \hat{j} + 7 \hat{k}) + \beta (2 \hat{i} + 3 \hat{j} + 4 \hat{k})\).
Here, the direction vector for both lines is:
\(\vec{b} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k}\),
and the position vectors of points on the lines are:
\(\vec{a}_1 = \lambda \hat{i} + 4 \hat{j} + 3 \hat{k}\), \(\vec{a}_2 = 2 \hat{i} + 6 \hat{j} + 7 \hat{k}\).
The formula for the shortest distance between two skew lines is:
\(\text{Shortest distance} = \frac{|\vec{b} \times (\vec{a}_2 - \vec{a}_1) \cdot \vec{b}|}{|\vec{b}|} = \frac{13}{\sqrt{29}}\).
Substituting \(\vec{a}_2 - \vec{a}_1\):
\(\vec{a}_2 - \vec{a}_1 = (2 - \lambda) \hat{i} + 2 \hat{j} + 4 \hat{k}\).
The cross product \(\vec{b} \times (\vec{a}_2 - \vec{a}_1)\) simplifies as follows:
\(\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 2 - \lambda & 2 & 4 \end{vmatrix}\).
Solving this determinant gives:
\(\vec{b} \times (\vec{a}_2 - \vec{a}_1) = (-8 \hat{j} + 12 \hat{i} + 4 (2 - \lambda) \hat{j})\).
Taking the magnitude and using the formula for shortest distance:
\(\text{Shortest distance} = \frac{|(-8 \hat{j} + 12 \hat{i})|}{13}\).
Finally solving the quadratic for \(\lambda = 1\).
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements, choose the most appropriate answer from the options given below: