Step 1. Evaluate the integral:
\(\int_{\frac{\pi}{8}}^{\frac{\pi}{3}} \sqrt{1 - \sin 2x} \, dx\)
Step 2. Rewrite \( \sqrt{1 - \sin 2x} \) using trigonometric identities:
\(\int_{\frac{\pi}{8}}^{\frac{\pi}{3}} |\sin x - \cos x| \, dx\)
Step 3. Split the integral based on the intervals where \( \sin x - \cos x \) changes sign:
\(= \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\sin x - \cos x) \, dx\)
Step 4. Solve each integral:
\(= -1 + 2\sqrt{2} - \sqrt{3}\)
Thus, we have:
\(\alpha + \beta \sqrt{2} + \gamma \sqrt{3} = -1 + 2\sqrt{2} - \sqrt{3}\)
where \( \alpha = -1 \), \( \beta = 2 \), and \( \gamma = -1 \).
Step 5. Calculate \( 3\alpha + 4\beta - \gamma \):
\(3\alpha + 4\beta - \gamma = 3(-1) + 4(2) - (-1) = -3 + 8 + 1 = 6\)
The Correct Answer is: \( 3\alpha + 4\beta - \gamma = 6 \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: