Step 1. Evaluate the integral:
\(\int_{\frac{\pi}{8}}^{\frac{\pi}{3}} \sqrt{1 - \sin 2x} \, dx\)
Step 2. Rewrite \( \sqrt{1 - \sin 2x} \) using trigonometric identities:
\(\int_{\frac{\pi}{8}}^{\frac{\pi}{3}} |\sin x - \cos x| \, dx\)
Step 3. Split the integral based on the intervals where \( \sin x - \cos x \) changes sign:
\(= \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\sin x - \cos x) \, dx\)
Step 4. Solve each integral:
\(= -1 + 2\sqrt{2} - \sqrt{3}\)
Thus, we have:
\(\alpha + \beta \sqrt{2} + \gamma \sqrt{3} = -1 + 2\sqrt{2} - \sqrt{3}\)
where \( \alpha = -1 \), \( \beta = 2 \), and \( \gamma = -1 \).
Step 5. Calculate \( 3\alpha + 4\beta - \gamma \):
\(3\alpha + 4\beta - \gamma = 3(-1) + 4(2) - (-1) = -3 + 8 + 1 = 6\)
The Correct Answer is: \( 3\alpha + 4\beta - \gamma = 6 \).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).