Given data:
Plant A | Plant B | |
---|---|---|
Manufactured | \(60\%\) | $40\%$ |
Standard quality | $80\%$ | $90\%$ |
Define:
The probabilities are:
\( P(C) = \frac{60}{100}, \quad P(B) = \frac{40}{100}. \)
The conditional probabilities are:
\( P(A \mid C) = \frac{80}{100}, \quad P(A \mid B) = \frac{90}{100}. \)
Using Bayes’ theorem:
\[ P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A \mid B) P(B) + P(A \mid C) P(C)}. \]
Substitute the values:
\[ P(B \mid A) = \frac{\frac{90}{100} \times \frac{40}{100}}{\frac{90}{100} \times \frac{40}{100} + \frac{80}{100} \times \frac{60}{100}}. \]
Simplify:
\[ P(B \mid A) = \frac{90 \times 40}{90 \times 40 + 80 \times 60} = \frac{3600}{3600 + 4800} = \frac{3600}{8400} = \frac{3}{7}. \]
Now:
\[ 126p = 126 \times \frac{3}{7} = 54. \]
Final Answer: \( 126p = 54. \)