The given function is:
\( f(x) = x^3 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right). \)
The second derivative of \( f(x) \) is computed as:
\( f''(x) = 6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \left(-\cos\left(\frac{1}{x}\right)\right). \)
Substitute \( x = \frac{2}{\pi} \):
\( f''\left(\frac{2}{\pi}\right) = 6\left(\frac{2}{\pi}\right) \sin\left(\frac{\pi}{2}\right) - 3 \cos\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi}{2}\right). \)
Simplify:
\( f''\left(\frac{2}{\pi}\right) = \frac{12}{\pi} - \frac{\pi^2}{2\pi} = \frac{24 - \pi^2}{2\pi}. \)
Thus, the final value is:
\( f''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}. \)
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: