The given function is:
\( f(x) = x^3 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right). \)
The second derivative of \( f(x) \) is computed as:
\( f''(x) = 6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \left(-\cos\left(\frac{1}{x}\right)\right). \)
Substitute \( x = \frac{2}{\pi} \):
\( f''\left(\frac{2}{\pi}\right) = 6\left(\frac{2}{\pi}\right) \sin\left(\frac{\pi}{2}\right) - 3 \cos\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi}{2}\right). \)
Simplify:
\( f''\left(\frac{2}{\pi}\right) = \frac{12}{\pi} - \frac{\pi^2}{2\pi} = \frac{24 - \pi^2}{2\pi}. \)
Thus, the final value is:
\( f''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}. \)
To solve this problem, we need to determine the values of the second derivative \( f''(x) \) for the given piecewise function \( f(x) \).
The given function is:
\(f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}\)
To proceed, we need to compute the derivatives of \( f(x) \). Let's start with the first derivative \( f'(x) \) for \( x \neq 0 \):
\(f'(x) = \frac{d}{dx} \left(x^3 \sin\left(\frac{1}{x}\right)\right)\)
Using the product rule, \(\frac{d}{dx}(uv) = u'v + uv'\), where \( u = x^3 \) and \( v = \sin\left(\frac{1}{x}\right) \):
Using the product rule,
\(f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) + x^3 \cdot \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right)\)
This simplifies to:
\(f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right)\)
Now we find the second derivative \( f''(x) \) for \( x \neq 0 \):
\(f''(x) = \frac{d}{dx}\left(3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right)\right)\)
Therefore,
\(f''(x) = 6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x}\)
Simplifying further gives:
\(f''(x) = 6x \sin\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x} - 4 \cos\left(\frac{1}{x}\right)\)
Now, evaluate at \( x = \frac{2}{\pi} \):
\(f''\left(\frac{2}{\pi}\right) = 6 \cdot \frac{2}{\pi} \sin\left(\frac{\pi}{2}\right) + \frac{1}{\frac{2}{\pi}} \sin\left(\frac{\pi}{2}\right) - 4\cos\left(\frac{\pi}{2}\right)\)
Since \(\sin\left(\frac{\pi}{2}\right) = 1\) and \(\cos\left(\frac{\pi}{2}\right) = 0\), we have:
\(f''\left(\frac{2}{\pi}\right) = \frac{12}{\pi} + \frac{\pi}{2} - 0\)
Thus, simplifying yields:
\(f''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}\)
The correct answer is \(f''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}\).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 